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1

A Summary

The local theory of new- and oldforms for representations of GL(2) is a tool
for studying automorphic forms on GL(2) and their applications. This the-
ory singles out, in infinite-dimensional representations, certain vectors which
encode information. Thus, this theory lies at the intersection of representa-
tion theory, modular forms theory, and applications to number theory. See
the work of Casselman [Ca2]; for more information and references, see [Sch1].
The paper [JPSS] generalized some aspects of the theory for GL(2) to GL(n)
for generic representations.

This work presents a local theory of new- and oldforms for representations
of GSp(4) with trivial central character. This theory resembles the GL(2) the-
ory, but also has some new features. Our theory considers vectors fixed by the
paramodular subgroups K(pn) as defined below. Paramodular groups, their
modular forms, and their application to abelian surfaces with polarizations of
type (1, N) have been considered for about fifty years. At the same time, the
literature perhaps shows a greater emphasis on Siegel modular forms defined
with respect to the Siegel congruence subgroup Γ0(N). Nevertheless, in hind-
sight, it seems clear that the paramodular subgroups are good analogues of
the congruence subgroups underlying the new- and oldforms theory for GL(2)
and GL(n). In combination with the structure of the discrete spectrum of
GSp(4,AQ), the results of this work lead to a satisfactory theory of new- and
oldforms for paramodular Siegel modular forms of genus 2. This is discussed
in our paper [RS]. We intend to consider this topic again in a later work.
This introduction is divided into three parts. The first part briefly reviews
the GL(2) theory, the second part summarizes our main results, and the final
part delineates the three methods used to prove the main theorems.

Before beginning, we mention some comments that apply to the entire
body of this work. First, as far as we know, our theory of new- and oldforms
is novel and is unanticipated by the existing framework of general conjectures.
Second, as concerns methods and assumptions, this work contains complete
proofs of all results, does not depend on any conjectures, and does not use
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global methods. And finally, this work makes no assumptions about the resid-
ual characteristic of the underlying non-archimedean local field.

The GL(2) Theory

The purpose of this work is to demonstrate the existence of a new- and old-
forms theory for GSp(4). We begin by recalling the relevant new- and oldforms
theory for GL(2), since this is the archetype for our collection of theorems.

First we require some definitions. Let F be a nonarchimedean local field
of characteristic zero with ring of integers o, let p be the maximal ideal of o,
and let q be the number of elements of o/p. Fix a generator $ for p. Let ψ be
a non-trivial character of F with conductor o. For each non-negative integer
n let Γ0(pn) be the subgroup of k in GL(2, F ) such that det(k) is in o× and

k ∈
[

o o
pn o

]
.

The group Γ0(pn) is normalized by the Atkin–Lehner element of level pn

un =
[

1
−$n

]
.

Note that u2
n lies in the center of GL(2, F ).

Next, we consider representations. Recall that an irreducible, admissible
representation of GL(2, F ) with trivial central character is either generic, in
which case it is infinite-dimensional, or non-generic, in which case it is one-
dimensional. The theory of new- and oldforms is mainly about generic repre-
sentations, and we consider them first. However, since our goal is to provide
motivation for the case of GSp(4), and since non-generic representations play
a much larger role in the local and global representation theory of GSp(4), we
will also treat the case of non-generic, i.e., one-dimensional, representations
at the end of this section.

Let π be a generic, irreducible, admissible representation of GL(2, F ) with
trivial central character. Let W(π, ψ) be the Whittaker model of π with re-
spect to ψ, and let

Z(s,W ) =
∫
F×

W (
[
a

1

]
)|a|s−1/2 d×a

be the zeta integral of W ∈ W(π, ψ). Zeta integrals satisfy a functional equa-
tion involving the element u0, and the theory of zeta integrals assigns to π
an L-factor L(s, π) and an ε-factor ε(s, π); see Chapter 6 of [G] for a sum-
mary. Let W ′

F be the Weil–Deligne group of F . If ϕ : W ′
F → GL(2,C) is

the L-parameter of π, then L(s, π) = L(s, ϕ) and ε(s, π) = ε(s, ϕ). For the
definitions of L(s, ϕ) and ε(s, ϕ) see the end of Sect. 2.4. The following is the
main theorem about newforms for GL(2) that is relevant for our purposes.
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Theorem (GL(2) Generic Newforms Theorem). Let (π, V ) be a generic,
irreducible, admissible representation of GL(2, F ) with trivial central charac-
ter. For each non-negative integer n, let V (n) be the subspace of V of vectors
W such that π(k)W = W for all k in Γ0(pn). Then the following statements
hold:

i) For some n the space V (n) is non-zero.
ii) If Nπ is the minimal n such that V (n) is non-zero, then dimV (Nπ) = 1.
iii) Assume V =W(π, ψ). There exists Wπ in V (Nπ) such that

Z(s,Wπ) = L(s, π).

If (π, V ) is a generic, irreducible, admissible representation of GL(2, F )
with trivial central character, then we callNπ the level of π; in some references,
Nπ is called the conductor of π. Any non-zero element of the one-dimensional
space V (Nπ) is called a newform, and the elements of the spaces V (n) for
n > Nπ are called oldforms.

A corollary of the GL(2) Generic Newforms Theorem is the computation
of the ε-factor of a generic representation. Let π be a generic, irreducible,
admissible representation of GL(2, F ) with trivial central character. Since u2

Nπ

lies in the center of F×, and since the space V (Nπ) is one-dimensional, any
non-zero element of V (Nπ) is an eigenvector of π(uNπ ) with eigenvalue επ =
±1. As a consequence of the functional equation for zeta integrals and the
GL(2) Newforms Theorem we obtain the following corollary.

Corollary (ε-factors of Generic GL(2) Representations). Let (π, V ) be
a generic, irreducible, admissible representation of GL(2, F ) with trivial cen-
tral character. Then ε(s, π) = επq

−Nπ(s−1/2).

This result computes the ε-factor of a generic representation in terms of
invariants of a newform that make no reference to a specific kind of model: can
L(s, π) also be computed in this way? This is possible using a Hecke operator.
Let n be a non-negative integer, and let H(Γ0(pn)) be the Hecke algebra of
Γ0(pn), i.e., the vector space of left and right Γ0(pn)-invariant, compactly sup-
ported functions on GL(2, F ) with product given by convolution. Let (π, V )
be a smooth representation of GL(2, F ) with trivial central character; we do
not assume V is the Whittaker model of π. Then H(Γ0(pn)) acts on V (n) by

π(f)v =
∫

GL(2,F )

f(g)π(g)v dg,

where the Haar measure on GL(2, F ) assigns Γ0(pn) volume 1. We will use
the operator π(f) on V (n) corresponding to the characteristic function f of

Γ0(pn)
[
$

1

]
Γ0(pn).

We will write T1 = π(f).
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Theorem (GL(2) Hecke Eigenvalues and L-functions). Let (π, V ) be a
generic, irreducible, admissible representation of GL(2, F ) with trivial central
character, and let W ∈ V (Nπ) be a newform, i.e., a non-zero element of the
one-dimensional space V (Nπ). Then W is an eigenform for T1; let

T1W = λπW.

i) Assume Nπ = 0, so that π is unramified. Then

L(s, π) =
1

1− λπq−1/2q−s + q−2s
.

ii) Assume Nπ = 1. Then

L(s, π) =
1

1− λπq−1/2q−s
.

iii) Assume Nπ ≥ 2. Then λπ = 0, and L(s, π) = 1.

The last result of the theory for generic representations asserts that vectors
in the spaces V (n) for n > Nπ are obtained by repeatedly applying two level
raising operators to a newform and taking linear combinations. For n a non-
negative integer, define β′ : V (n) → V (n + 1) by β′(v) = v. Also, define
β : V (n) → V (n + 1) to be the Atkin–Lehner conjugate of β′, i.e., define
β = π(un+1) ◦ β′ ◦ π(un), so that

β = π(
[
1
$

]
).

Theorem (GL(2) Oldforms Theorem). Let (π, V ) be a generic, irre-
ducible, admissible representation of GL(2, F ) with trivial central character.
Then, for any integer n ≥ Nπ,

dimV (n) = n−Nπ + 1.

If W ∈ V (Nπ) is non-zero, then the space V (n) for n ≥ Nπ is spanned by the
linearly independent vectors

β′iβjW, i, j ≥ 0, i+ j = n−Nπ.

In particular, all oldforms can be obtained by applying level raising operators
to the newform and taking linear combinations.

Finally, similar results hold for non-generic representations which admit
non-zero vectors fixed by some Γ0(pn). Again, any non-generic, irreducible,
admissible representations of GL(2, F ) with trivial central character is one-
dimensional, and is thus of the form α ◦ det for some character α of F×. Let
π = α ◦ det, where α is a character of F×. Then π admits a non-zero vector
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fixed by Γ0(pn) for some non-negative integer n if and only if α is unramified.
Assume α is unramified. Obviously, V (n) is non-zero and one-dimensional for
all non-negative integers n. The quantities Nπ, επ and λπ from above are all
defined since they are model-independent. We have

Nπ = 0, επ = 1, λπ = (q + 1)α($).

Though the theory of zeta integrals for generic representations does not ap-
ply, the Langlands correspondence assigns ε-factors and L-factors to all irre-
ducible, admissible representations of GL(2, F ). These assignments coincide
with the assignments made by the theory of zeta integrals for generic repre-
sentations. If ϕπ : W ′

F → GL(2,C) is the L-parameter assigned to π, then
a computation shows that ε(s, ϕπ) and L(s, ϕπ) can be expressed by exactly
the same formulas as in the generic setting:

ε(s, ϕπ) = επq
−Nπ(s−1/2), L(s, ϕπ) =

1
1− λπq−1/2q−s + q−2s

.

It is trivial that the elements of V (n) for n ≥ Nπ = 0 are obtained from a
newform by applying the level raising operator β′. Though it is obvious, we
note also that, in contrast to the case of generic representations, β and β′ do
not produce linearly independent vectors.

Main Results

In analogy to the GL(2) theory, this work considers vectors in irreducible,
admissible representations of GSp(4, F ) with trivial central character that are
fixed by the paramodular groups K(pn), as defined below. Such vectors are
called paramodular, as are representations which admit non-zero paramod-
ular vectors. Briefly summarized, our work has three main results. First, a
theory of new- and oldforms exists for generic representations of GSp(4) with
trivial central character, and this theory strongly resembles the GL(2) theory
described above. In particular, all generic representations with trivial central
character are paramodular. Second, the two essential aspects of the generic
theory also hold for arbitrary paramodular representations π of GSp(4): there
is uniqueness at the minimal paramodular level, and all oldforms are obtained
from a newform by applying certain level raising operators and taking linear
combinations. Third, newforms in paramodular representations encode im-
portant canonical information. If the language of the conjectural Langlands
correspondence is used, then our results, which do not depend on or use any
conjectures, indicate that a newform in a paramodular representation π deter-
mines the επ-factor ε(s, ϕπ) and the L-factor L(s, ϕπ) of the L-parameter ϕπ
of π. In this section we will discuss the main results in the order mentioned,
beginning with the theorems about generic representations. Readers desiring
to see additional data should consult the tables in the appendix. These tables
explicitly describe important objects and quantities for each irreducible, ad-
missible representation of GSp(4, F ) with trivial central character. The basis
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for these tables is the Sally-Tadić classification [ST] of non-supercuspidal, ir-
reducible, admissible representations of GSp(4, F ) in the form of Table A.1.
Methods and proofs will be discussed in the next section.

First we need some general definitions. Throughout this work, GSp(4, F )
is the group of g in GL(4, F ) such that tgJg = λJ for some λ in F×, where

J =


1

1
−1

−1

 .
The element λ is unique, and will be denoted by λ(g). If n ≥ 0 is a non-
negative integer, then the paramodular group K(pn) of level pn is the subgroup
of k ∈ GSp(4, F ) such that λ(k) is in o× and

k ∈


o o o p−n

pn o o o
pn o o o
pn pn pn o

 .
The first paramodular group K(p0) is just GSp(4, o), a maximal compact,
open subgroup of GSp(4, F ). The second paramodular group K(p1) is the
other maximal compact, open subgroup of GSp(4, F ), up to conjugacy. Note
that, in contrast to the case of the Hecke subgroups in GL(2, F ), K(pn) is not
contained in K(pm) for any pair of distinct non-negative integers n and m.
The paramodular group K(pn) is normalized by the Atkin–Lehner element

un =


1
−1

$n

−$n

 .
Suppose that (π, V ) is an irreducible, admissible representation of GSp(4, F )
with trivial central character. If n is a non-negative integer, then we define
V (n) to be the subspace of vectors v in V such that π(k)v = v for k ∈
K(pn). The elements of V (n) are called paramodular vectors. We say that π is
paramodular if V (n) 6= 0 for some n. If π is paramodular, then we define Nπ to
be the minimal n such that V (n) is non-zero, and we call Nπ the paramodular
level of π.
Generic Representations. Now we will discuss our results for generic repre-
sentations. Let (π, V ) be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character. Again, let ψ be a non-trivial char-
acter of F with conductor o, fix c1, c2 ∈ o×, and define the Whittaker model
W(π, ψc1,c2) of π with respect to a certain character ψc1,c2 of the upper-
triangular subgroup of GSp(4, F ) as in Section 2.1. A theory of zeta inte-
grals, introduced by Novodvorsky [N], exists for generic representations of
GSp(4, F ). If W ∈ W(π, ψc1,c2), then the zeta integral of W is
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Z(s,W ) =
∫
F×

∫
F

W (


a
a
x 1

1

)|a|s−3/2 dx d×a.

See Section 2.6 for more theory and references. As regards basic facts, this
theory of zeta integrals is similar to the theory of zeta integrals for generic
representations of GL(2, F ). In particular, zeta integrals satisfy a functional
equation involving u0, and the theory associates to π an L-factor L(s, π) and
an ε-factor ε(s, π). The work [Tak] computed the factors L(s, π) for all generic,
irreducible, admissible representations π of GSp(4, F ). The factor L(s, π) is
sometimes called the spin L-function of π, and is of the form 1/Q(q−s), where
Q(X) ∈ C[X] is a polynomial of at most degree four such that Q(0) = 1. If the
conjectural Langlands correspondence for GSp(4, F ) exists, and if ϕπ : W ′

F →
GSp(4,C) is the L-parameter of π according to this correspondence, then it
is conjectured that L(s, π) = L(s, ϕπ) and ε(s, π) = ε(s, ϕπ). Here, ϕπ is
regarded as a four-dimensional representation of the Weil–Deligne group W ′

F ;
we have ε(s, ϕπ) = εϕπ

q−a(ϕπ)(s−1/2), where εϕπ
= ±1, and a(ϕπ) is a non-

negative integer. We call a(ϕπ) the conductor of ϕπ. The following theorem
is an analogue of the corresponding GL(2) result described above.

Theorem 7.5.4 (Generic Main Theorem). Let (π, V ) be a generic, irre-
ducible, admissible representation of GSp(4, F ) with trivial central character.
Then the following statements hold:

i) There exists an n such that V (n) 6= 0, i.e., π is paramodular.
ii) If Nπ is the minimal n such that V (n) 6= 0, then dimV (Nπ) = 1.
iii) Assume V =W(π, ψc1,c2). There exists Wπ ∈ V (Nπ) such that

Z(s,Wπ) = L(s, π).

One immediate consequence of this theorem is that paramodular represen-
tations exist and include generic representations. If π is a generic, irreducible,
admissible representation of GSp(4, F ) with trivial central character, then we
call the non-zero elements of V (Nπ) newforms; the above theorem asserts that
a newform for π is essentially unique. The elements of V (n) for n > Nπ are
called oldforms.

Just as for GL(2), if π is a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character, then the ε-factor and L-factor of π
can be computed in terms of universal invariants of a newform, i.e., invariants
of a newform that do not depend on a specific model for π. These formulas
for ε(s, π) and L(s, π) involve the level Nπ, the Atkin–Lehner eigenvalue of
a newform, and the Hecke eigenvalues of a newform. The formula for ε(s, π),
and its derivation from Theorem 7.5.4, are identical to those of the GL(2)
theory.
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Corollary 7.5.5 (ε-factors of Generic Representations). Let (π, V ) be a
generic, irreducible, admissible representation of GSp(4, F ) with trivial central
character. Let Nπ be the paramodular level of π as in Theorem 7.5.4, and
let επ be the eigenvalue of the Atkin–Lehner involution π(uNπ ) on the one-
dimensional space V (Nπ). Then

ε(s, π) = επq
−Nπ(s−1/2).

The formula for L(s, π) in terms of model-independent invariants of a
newform requires two Hecke operators. Let n be a non-negative integer, and
let H(K(pn)) be the Hecke algebra of K(pn), i.e., the vector space of left
and right K(pn)-invariant, compactly supported functions on GSp(4, F ) with
product given by convolution. Suppose that (π, V ) is a smooth representation
of GSp(4, F ) with trivial central character; no assumption is made about V .
Then H(K(pn)) acts on V (n) via the formula

π(f)v =
∫

GSp(4,F )

f(g)π(g)v dg.

Here the Haar measure on GSp(4, F ) gives K(pn) volume 1. We will use the
operators on V (n) induced by the characteristic functions of

K(pn)


$
$

1
1

K(pn) and K(pn)


$2

$
$

1

K(pn).

These operators will be called T0,1 and T1,0, respectively. Motivation for the
consideration of these Hecke operators is provided below in the section on
methods and proofs.

Theorem 7.5.3 (Hecke Eigenvalues and L-functions). Let (π, V ) be a
generic, irreducible, admissible representation of GSp(4, F ) with trivial central
character. Let W be a newform of π, i.e., a non-zero element of the one-
dimensional space V (Nπ). Let

T0,1W = λπW, T1,0W = µπW,

where λπ and µπ are complex numbers.

i) Assume Nπ = 0, so that π is unramified. Then

L(s, π)=
1

1− q−3/2λπq−s + (q−2µπ + 1 + q−2)q−2s − q−3/2λπq−3s + q−4s
.

ii) Assume Nπ = 1, and let π(u1)W = επW , where επ = ±1 is the Atkin–
Lehner eigenvalue of W . Then

L(s, π) =
1

1− q−3/2(λπ + επ)q−s + (q−2µπ + 1)q−2s + επq−1/2q−3s
.
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iii) Assume Nπ ≥ 2. Then

L(s, π) =
1

1− q−3/2λπq−s + (q−2µπ + 1)q−2s
.

This theorem exhibits two new phenomena not present in the GL(2) the-
ory. First, when Nπ = 1, the formula for L(s, π) involves not just a Hecke
eigenvalue, but also the Atkin–Lehner eigenvalue επ. Second, in contrast to
the GL(2) theory, it is not true that L(s, π) = 1 if Nπ is sufficiently large.
There are examples of π such that Nπ is arbitrarily large and µπ = 0; for such
π we have L(s, π) 6= 1 by iii) of Theorem 7.5.3.

Oldforms in generic representations of GSp(4, F ) also exhibit a new phe-
nomenon. Just as in the GL(2) case, oldforms for GSp(4) are obtained from
a newform via level raising operators; however, the GSp(4) case requires an
extra operator, and the spaces of oldforms have an additional summand. Let
(π, V ) be a smooth representation of GSp(4, F ) with trivial central character.
The first two level raising operators, called θ′ and θ, are analogues of the
GL(2) operators β′ and β. The operator θ′ : V (n)→ V (n+ 1) is the natural
trace operator, and is the analogue of the GL(2) level raising operator β′. The
operator θ : V (n) → V (n + 1) is the Atkin–Lehner conjugate of θ′, and is
thus defined by θ = π(un+1) ◦ θ′ ◦ π(un). This operator is the analogue of β.
The third operator, η : V (n)→ V (n+ 2), skips one level and does not have a
GL(2) analogue. It is defined by

η = π(


$−1

1
1
$

).

Theorem 7.5.6 (Generic Oldforms Theorem). Let (π, V ) be a generic,
irreducible, admissible representation of GSp(4, F ) with trivial central char-
acter. Let Nπ be the paramodular level of π and let Wπ be the newform as in
Theorem 7.5.4. Then, for any integer n ≥ Nπ,

dimV (n) =
[
(n−Nπ + 2)2

4

]
.

For n ≥ Nπ, the space V (n) is spanned by the linearly independent vectors

θ′iθjηkWπ, i, j, k ≥ 0, i+ j + 2k = n−Nπ.

In particular, all oldforms are obtained by applying level raising operators to
the newform and taking linear combinations.

An alternative formulation of this theorem exposes the similarities and
differences between oldforms for GL(2) and oldforms in generic representations
of GSp(4, F ). Theorem 7.5.6 is equivalent to the statement that for n ≥ Nπ
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the space V (n) is the direct sum of the subspace spanned by the linearly
independent vectors

θ′iθjWπ, i, j ≥ 0, i+ j = Nπ − n,

and the subspace ηV (n− 2), so that

dimV (n) = n−Nπ + 1 + dimV (n− 2).

Stated this way, we see that oldforms in generic representations of GSp(4, F )
have a structure similar to the structure of oldforms in generic representations
of GL(2), with one difference: in the case of GSp(4), the space V (n− 2) also
contributes to V (n) via η. The subspace ηV (n−2) can be characterized as the
subspace of W in V (n) such that Z(s,W ) = 0. We call this characterization
the η Principle, and discuss it in the next section. Vectors W in V (n) such
that Z(s,W ) = 0 are degenerate. Degenerate vectors do not exist in the GL(2)
theory, and are a new phenomenon for GSp(4).
Arbitrary Representations. This work also treats arbitrary paramodular, irre-
ducible, admissible representations of GSp(4, F ) with trivial central character.
We prove that the two basic principles of the generic theory hold for arbitrary
paramodular representations. These principles are essential for global appli-
cations. First of all, there is uniqueness at the minimal paramodular level:

Theorem 7.5.1 (Uniqueness at Minimal Level). Let (π, V ) be an irre-
ducible, admissible representation of GSp(4, F ) with trivial central character.
Assume that π is paramodular, and let Nπ be the minimal paramodular level.
Then dimV (Nπ) = 1.

If π is a paramodular, irreducible, admissible representation of GSp(4, F )
with trivial central character, then we call the non-zero elements of V (Nπ)
newforms; the theorem asserts that newforms in paramodular representations
are essentially unique. The elements of V (n) for n > Nπ are called oldforms.
Global applications will require the following theorem. This second basic prin-
ciple asserts that oldforms are obtained from a newform by applying level
raising operators:

Theorem 7.5.7 (Oldforms Principle). Let (π, V ) be an irreducible, admis-
sible representation of GSp(4, F ) with trivial central character. Assume that
π is paramodular. If v is a non-zero element of the one-dimensional space
V (Nπ) and n ≥ Nπ, then the space V (n) is spanned by the (not necessarily
linearly independent) vectors

θ′iθjηkv, i, j, k ≥ 0, i+ j + 2k = n−Nπ.

In other words, all oldforms can be obtained from the newform v by applying
level raising operators and taking linear combinations.
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In fact, we have determined a basis for V (n) among the spanning set of
vectors θ′iθjηkW for all paramodular representations and all n. By Theorem
7.5.6, if π is generic, then the spanning vectors θ′iθjηkW , where i, j, k ≥ 0 and
i+j+2k = n−Nπ, form a basis, and the dimension of V (n) is [(n−Nπ+2)2/4].
This characterizes generic representations: a representation is generic if and
only if the representation is paramodular and dimV (n) = [(n−Nπ+2)2/4] for
n ≥ Nπ. The bases for V (n) for non-generic, paramodular representations also
follow general schemes. There are four patterns for non-generic, paramodular
representations. First, it can happen that the vectors θ′iηkW where i, k ≥ 0
and i+2k = n−Nπ form a basis for V (n), so that dimV (n) = [(n−Nπ+2)/2]
for n ≥ Nπ. This occurs if and only if π is paramodular and of type IIb, IVb,
Vb, Vc, VIc, VId or XIb. The second possibility is that the vectors θ′iθjW
where i, j ≥ 0 and i+j = n−Nπ form a basis for V (n), and hence dimV (n) =
n−Nπ + 1 for n ≥ Nπ. This happens if and only if π is paramodular and of
type IIIb or IVc. Third, the vectors ηkW where k ≥ 0 and 2k = n−Nπ form
a basis for V (n), so that dimV (n) = (1+(−1)n)/2 for n ≥ Nπ. This occurs if
and only if π is paramodular and of type Vd. Finally, it can happen that the
vectors θ′iW where i = n−Nπ form a basis for V (n), and thus dimV (n) = 1
for n ≥ Nπ. This last possibility happens exactly for quadratic unramified
twists of the trivial representation, i.e., π is paramodular and of type IVd. See
Table A.12 for the dimensions of the spaces V (n) for all irreducible, admissible
representations of GSp(4, F ) with trivial character.
Information Carried by a Newform. Finally, our results show that a newform
in a paramodular representation carries important canonical information. Let
π be a paramodular, irreducible, admissible representation of GSp(4, F ) with
trivial central character. We saw above that if π is generic, then ε(s, π) and
L(s, π) can be expressed in terms of the model-independent invariants Nπ,
επ, λπ and µπ. Thus, if π is generic, then a newform for π contains all the
information present in ε(s, π) and L(s, π). Next, assume that π is non-generic.
Then the theory of zeta integrals is not available, but based on the generic case
it is natural to conjecture the following: if ϕπ is the conjectural L-parameter
of π, then ε(s, ϕπ) and L(s, ϕπ) can be expressed in terms of Nπ , επ, λπ and
µπ via the same formulas in Corollary 7.5.5 and Theorem 7.5.3. Of course,
verifying this conjecture requires knowing ϕπ; this appears to be a problem
since the Langlands correspondence for GSp(4, F ) is conjectural, so that the
L-parameters of general representations are not known. However, it turns out
that the desiderata of the conjectural Langlands correspondence, in combina-
tion with the classification of induced representations from [ST], do determine
the L-parameters of some representations of GSp(4, F ), namely those that
are non-supercuspidal. The following theorem implies that any non-generic,
paramodular representation is of this type, and is even non-tempered.
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Theorem 7.5.8 (Tempered Representations). Let π be an irreducible,
admissible representation of GSp(4, F ) with trivial central character. Assume
π is tempered. Then π is paramodular if and only if π is generic.

The next theorem shows that the conjecture of the last paragraph is true
when π is non-generic; in fact, the conjecture is true for all paramodular π
that are non-supercuspidal.

Theorem 7.5.9 (Non-supercuspidal Newforms and L- and ε-factors).
Let (π, V ) be a paramodular, non-supercuspidal, irreducible, admissible rep-
resentation of GSp(4, F ) with trivial central character. Let ϕπ : W ′

F →
GSp(4,C) be the L-parameter assigned to π as in Sect. 2.4. Let Nπ be the
minimal paramodular level of π, and let v ∈ V (Nπ) be a non-zero vector.
Let επ be the Atkin–Lehner eigenvalue of v, and let λπ and µπ be the Hecke
eigenvalues of v, defined by T0,1v = λπv and T1,0v = µπv. Then

ε(s, ϕπ) = επq
−Nπ(s−1/2).

i) Assume Nπ = 0, so that π is unramified. Then

L(s, ϕπ)=
1

1− q−3/2λπq−s + (q−2µπ+1+q−2)q−2s − q−3/2λπq−3s + q−4s
.

ii) Assume Nπ = 1. Then

L(s, ϕπ) =
1

1− q−3/2(λπ + επ)q−s + (q−2µπ + 1)q−2s + επq−1/2q−3s
.

iii) Assume Nπ ≥ 2. Then

L(s, ϕπ) =
1

1− q−3/2λπq−s + (q−2µπ + 1)q−2s
.

To close this section we remark that if the conjectural Langlands cor-
respondence for GSp(4, F ) has the expected properties, then paramodular
representations are well behaved with respect to L-packets. An examination
of the L-parameters for GSp(4, F ) along with the desiderata of the Langlands
correspondence conjecture show that the L-packets with more than one ele-
ment should be tempered. It is conjectured that a tempered L-packet contains
a unique generic element. Therefore, by Theorem 7.5.8, the following is true if
the Langlands correspondence for GSp(4, F ) has the expected properties: any
L-packet for GSp(4, F ) contains at most one paramodular representation.

Methods and Proofs

Having described the main results of this work, we will now give an overview
of the proofs. A chief feature of the arguments in this work is the use of three
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methods: P3-theory, double coset decompositions, and Hecke operators. Be-
low, we will describe each method and its consequences; these methods are
implemented in the same sequence in the body of this work. In addition, two
other tools are used throughout this work to study paramodular vectors. The
first is the use of the level raising operators θ′, θ and η, and more gener-
ally, level changing operators. The second tool is zeta integrals. Thus, in this
work level raising operators and zeta integrals play roles beyond their original
purposes of accounting for oldforms and defining L-functions and ε-factors, re-
spectively. Finally, there is another organizational element that should be kept
in mind while reading this exposition. This is the partition of the irreducible,
admissible representations of GSp(4, F ) with trivial central character into cer-
tain subclasses. It is possible to partition the representations of GSp(4, F ) in
two important ways: first, a representation is generic or non-generic; second, a
representation is non-supercuspidal or supercuspidal. Thus, one obtains four
subclasses:

Generic
non-supercuspidal
representations

Generic
supercuspidal

representations

Non-generic
non-supercuspidal
representations

Non-generic
supercuspidal

representations

Fig. 1.1. Partition of the representations of GSp(4, F ).

All non-supercuspidal representations of GSp(4, F ) have been classified. See
[ST] and Table A.1. We will often use this classification of non-supercuspidal
representations; however, we do not require any explicit constructions of su-
percuspidal representations of GSp(4, F ).
P3-theory. In this work we use a Kirillov-type theory for GSp(4) to prove key
results about paramodular vectors. The basic idea is to map an irreducible,
admissible representation (π, V ) of GSp(4, F ) with trivial central character to
a certain associated smooth representation of the subgroup

P3 =

∗ ∗ ∗∗ ∗ ∗
1


of GL(3, F ). Results about paramodular vectors in V are then obtained from
knowledge about the associated P3 representation. We call this method P3-
theory, and it is analogous to the familiar GL(n) technique. In the setting
of GL(n), every irreducible, admissible representation τ of GL(n, F ) defines
an associated smooth representation τ |Pn of the analogous subgroup Pn of
GL(n, F ) by restriction. The representation τ |Pn is of finite length, and this
association plays an important role in the representation theory of GL(n, F ).
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For example, it can be used to prove the existence of Kirillov models for
generic, irreducible, admissible representations of GL(n, F ). See [BZ]. As we
shall see in a moment, for GSp(4) the definition of the associated representa-
tion, and its relationship to the original representation, are more complicated
than restriction. Nevertheless, P3-theory is a powerful technique, and we make
two important applications to the study of paramodular vectors that form a
basis for the rest of this work. First, we use P3-theory to prove that generic,
irreducible, admissible representations of GSp(4, F ) are paramodular; in the
other direction, we use P3-theory to prove that certain families of non-generic
representations are non-paramodular. Second, we use P3-theory in an essen-
tial way to prove the η Principle. The η Principle characterizes degenerate
paramodular vectors in generic representations, that is, paramodular vectors
W such that Z(s,W ) vanishes. As such, the η Principle removes an obstacle
to the productive use of zeta integrals in the study of paramodular vectors.
An immediate corollary of these results is a lower bound on the dimension
of the space of paramodular vectors of level pn in a generic representation;
later on we prove that this lower bound is actually the dimension of the space
of paramodular vectors of level pn. We describe these applications below; the
double coset and Hecke operators methods that we subsequently delineate
will build on these results. We were inspired to use P3-theory for GSp(4) by
the global Lemma 6.2 of [PS]. This lemma provides the key homomorphism
described below; see also [GPSR], Part B, Chapter II, for an example of the
use of Pn-theory in the study of representations of SO(2n+ 1).

In the GSp(4, F ) context, the starting point for the definition of the associ-
ated P3 representation is the observation that there is a natural isomorphism

P3
∼−−−−→ Q/ZZJ ,

where Z is the center of GSp(4, F ), Q is the Klingen parabolic subgroup of
GSp(4, F ), and ZJ is the normal subgroup of Q defined as

Q =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

 , ZJ =


1 ∗

1
1

1

 .
Let (π, V ) be an irreducible, admissible representation of GSp(4, F ) with triv-
ial central character. Then, via this isomorphism, the space VZJ is a smooth
representation of P3; here, VZJ is the quotient of V by the subspace V (ZJ)
consisting of all C linear combinations of vectors of the form v−π(z)v for v in
V and z in ZJ . The P3 representation VZJ has finite length. The irreducible,
smooth representations of P3 are classified in [BZ], and any non-zero, irre-
ducible, smooth representation of P3 is obtained from a non-zero irreducible,
admissible representations of GL(0, F ) = 1, GL(1, F ) or GL(2, F ) via an in-
duction process. We denote them by

τ(1) = τP3
GL(0)(1), τ(χ) = τP3

GL(1)(χ), τ(ρ) = τP3
GL(2)(ρ).
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Here, 1 is the non-trivial irreducible, admissible representation of GL(0, F ) =
1, i.e., the trivial representation, χ is a character of F×, and ρ is a non-zero,
irreducible, admissible representation of GL(2, F ). The representation VZJ

thus has a filtration of finite length whose irreducible subquotients are of the
above form. In fact, there exists a sequence of P3 subspaces of VZJ

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ

such that V2 is either 0 or τ(1), the non-zero irreducible subquotients of V1/V2,
if they exist, are of the form τ(χ), and the non-zero irreducible subquotients
of V0/V1, if they exist, are of the form τ(ρ). The representation π is generic
if and only if V2 is non-zero, and π is supercuspidal if and only if VZJ =
V2. Thus, π is generic and supercuspidal if and only if VZJ is non-zero and
VZJ

∼= τ(1), and π is non-generic and supercuspidal if and only if VZJ = 0.
In addition, the structure of L(s, π) is reflected in the filtration of V1/V2 by
irreducible subquotients when π is generic. More precisely, there is a bijection
between the poles of L(s, π) and those irreducible subquotients of V1/V2 of
the form τ(χ), where χ is an unramified character of F×. Each pole of L(s, π),
counted for multiplicity, induces a certain linear functional on VZJ , and each
irreducible subquotient of V1/V2 of the form τ(χ) with χ unramified also
induces a particular linear functional on VZJ : the linear functionals associated
to corresponding poles and irreducible subquotients coincide. For more, see
Section 4.2. Finally, the filtrations of all irreducible, admissible representations
π of GSp(4, F ) with trivial central character can be computed, and appear in
Tables A.5 and A.6.

With these facts in place, our first application of P3-theory to paramod-
ular vectors concerns non-existence and existence. As the next proposition
shows, if (π, V ) is an irreducible, admissible representation of GSp(4, F ) with
trivial central character, then the associated representation VZJ sees all of
the paramodular vectors in V . This is the initial indication that P3-theory
might be useful in the study of paramodular vectors. The proof of this propo-
sition uses the fact that non-zero paramodular vectors of distinct levels are
linearly independent; in the statement Vpara is the vector space spanned by
all paramodular vectors at all levels.

Proposition 3.4.2. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. Assume that the subspace of vectors
of V fixed by Sp(4, F ) is trivial. Let p : V → VZJ be the projection map. If
v ∈ V (n) for some non-negative integer n ≥ 0 and p(v) = 0, then v = 0. More
generally, if v ∈ Vpara and p(v) = 0, then v is a linear combination of vectors
of the form

qw − θ′w + ηw,

where W ∈ V (m) for some non-negative integer m ≥ 0.

We use this proposition to prove that certain families of non-generic rep-
resentations are not paramodular. Let (π, V ) be an irreducible, admissible
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representation of GSp(4, F ) with trivial central character. If V contains a
non-zero paramodular vector v, then it follows from Proposition 3.4.2 that
some non-zero irreducible subquotient of the P3 representation VZJ contains
a non-zero vector invariant under the group P3(o). As we mentioned above,
there are three types of non-zero irreducible, smooth representations of P3,
and such a representation admits a non-zero vector invariant under P3(o) if
and only if the representation is of the form τ(γ), where γ is an unramified,
irreducible, admissible representation of GL(0, F ) = 1, GL(1, F ) or GL(2, F ).
Thus, if none of the non-zero irreducible subquotients of VZJ

are of this form,
then π is not paramodular. By this, we deduce that if π is non-generic and
supercuspidal, then π is non-paramodular. Using Tables A.5 and A.6, which
list the P3-filtrations of all irreducible admissible representations, we also con-
clude that a number of other families of non-generic representations are also
not paramodular: see Theorem 3.4.3. By later arguments, the π that can be
proven to be non-paramodular using this argument turn out to be exactly the
non-paramodular representations.

Turning to existence, we also use P3-theory to prove that generic rep-
resentations are paramodular. Let (π, V ) be a generic, irreducible, admissi-
ble representation of GSp(4, F ) with trivial central character. By Proposition
3.4.2, if V does contain a non-zero paramodular vector, then its image in
VZJ is non-zero and invariant under P3(o). Thus, to prove the existence of
a non-zero paramodular vector in V , one might start with an appropriate
non-zero P3(o)-invariant vector in VZJ . Indeed, since π is generic, the P3 rep-
resentation τ(1) is contained in VZJ , and we construct non-zero paramodular
vectors in V from appropriate P3(o)-invariant vectors in τ(1). Readers famil-
iar with GL(2) theory will recognize an analogy to the existence argument for
non-zero Γ0(pn)-invariant vectors in generic representations of GL(2, F ) with
trivial central character using Kirillov models. However, due to the nature
of the paramodular group, the GSp(4) case uses more than smoothness and
involves level raising operators and zeta integrals.

Our second application of P3-theory is a proof of the η Principle. Let π
be a generic, irreducible, admissible representation of GSp(4, F ) with trivial
central character, let V =W(π, ψc1,c2) be the Whittaker model of π, and let
W be a non-zero paramodular vector in V of level n. Algebraic manipulations
prove that if W is in the image of the level raising operator η, i.e., n ≥ 2 and
W = ηW1 for some paramodular vector of level n− 2, then Z(s,W ) = 0. The
η Principle asserts that the converse is true, so that this is the only way that
degenerate vectors can arise.

Theorem 4.3.7 (η Principle). Let π be a generic, irreducible, admissi-
ble representation of GSp(4, F ) with trivial central character, and let V =
W(π, ψc1,c2). Let n ≥ 0 be an integer. If W is non-zero and degenerate, then
n ≥ 2, and there exists W1 ∈ V (n− 2) such that W = ηW1.
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To understand how P3-theory helps to prove the η Principle, again let W
be a non-zero degenerate paramodular vector in V of level n; for simplicity,
assume that n ≥ 2. Using that η is given by the action of a single element of
GSp(4, F ), a computation shows that W = ηW1 for a paramodular vector W1

of level n− 2 if and only if W is invariant under the group of elements
1 y

1
1 −y

1

 , y ∈ p−1,

or equivalently and more conveniently, the single vector

W ′ = qW −
∑

x∈p−1/o

π(


1 y

1
1 −y

1

)W

is zero. Since we are working in the Whittaker model of π, we thus need
to prove that W ′(g) = 0 for all g ∈ GSp(4, F ). Using little more than the
definition of degeneracy, one can verify that in fact W ′(q) = 0 for all q ∈ Q.
If our group were GL(2) or GL(n), then we could immediately conclude that
W ′ = 0 using one of the fundamental theorems of GL(n) Kirillov theory. To
proceed in our GSp(4) situation we use the appropriate substitute, which is
P3-theory. The first step is to prove that the image p(W ′) of W ′ in VZJ is
zero. The argument for this proceeds by pushing down the vector p(W ′) in the
sequence 0 ⊂ V2 ⊂ V1 ⊂ VZJ described above. First of all, due to some basic
properties of p(W ′) and the fact that the irreducible subquotients of VZJ/V1

are all of GL(2)-type, we must have p(W ′) ∈ V1. The next stage proves that
p(W ′) ∈ V2. The argument for this uses the degeneracy of W and the bijection
between the poles of the irreducible subquotients of V1/V2 of the form τ(χ)
where χ is an unramified character of F×. Now that p(W ′) ∈ V2, we prove
that p(W ′) = 0, i.e., W ′ ∈ V (ZJ). This step considers the sequence of Q
representations

0→ V (ZJ)→ p−1(V2)→ {U |Q : U ∈ p−1(V2)} → 0.

The point is that this sequence is exact because V2 is irreducible: as π is
generic, V2 is isomorphic to the unique non-zero irreducible P3 representation
τ(1) of GL(0)-type. Since W ′ vanishes on Q, by exactness we obtain W ′ ∈
V (ZJ), or equivalently, p(W ′) = 0; this completes the role of P3-theory in the
analysis of W ′. The final step is to prove that W ′ = 0 using p(W ′) = 0. This
algebraic argument again uses level raising operators.

The results obtained from P3-theory imply a lower bound for the dimen-
sion of the space of paramodular vectors of fixed level in a generic repre-
sentation. Let (π, V ) be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character. By the first application of P3-theory,



18 1 A Summary

π is paramodular. Let Nπ be the smallest non-negative integer n such that
V (n) is non-zero, i.e., let Nπ be the paramodular level of π, and let W be a
non-zero element of V (Nπ). Applying the commuting level raising operators
θ′, θ and η creates the vectors

θ′iθjηkW.

These vectors lie in V (n) with n = i+ j + 2k. We use zeta integrals to prove
that these vectors are linearly independent for distinct triples i, j and k and
fixed n. The key point is that the η Principle implies that Z(s,W ) is non-zero:
this invariant sees W . Another important ingredient is the compatibility of
zeta integrals with level raising operators. If U is a paramodular vector in V ,
then

Z(s, θ′U) = qZ(s, U), Z(s, θU) = q−s+3/2Z(s, U), Z(s, ηU) = 0.

With linear independence, we obtain a lower bound for the dimension of V (n)
by counting the number of solutions to n = i+ j + 2k. The result is

dimV (n) ≥
[
(n−Nπ + 2)2

4

]
= (n−Nπ) + 1 +

[
(n−Nπ)2

4

]
for n ≥ Nπ.

As is asserted by Theorem 7.5.6, this lower bound turns out to be the dimen-
sion of V (n). This, and the full statement of Theorem 7.5.6, follow from the
application of the next two methods.

The contributions of P3-theory can be conveniently summarized using the
above mentioned partition of of the irreducible, admissible representations of
GSp(4, F ) into four classes:

Generic
non-supercuspidal
representations

:
η Principle,
dim. lower

bound

Generic
supercuspidal

representations
:

η Principle,
dim. lower

bound

Non-generic
non-supercuspidal
representations

:
Some families

are not
paramodular

Non-generic
supercuspidal

representations
:

Not
paramodular

Fig. 1.2. Major contributions of P3-theory.

Since they are not paramodular, non-generic supercuspidal representations
require no further consideration. Non-generic induced representations that are
not paramodular also require no more examination. However, the fact that
they admit no paramodular vectors will play a role in our next topic.
Double coset decompositions. The second method deployed in this work is the
use of double coset decompositions in the analysis of non-supercuspidal repre-
sentations. In combination with some of the P3-theory results, the main results
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proven using double coset decompositions are dimension formulas for all of
the spaces of paramodular vectors of fixed level in all non-supercuspidal, irre-
ducible, admissible representations of GSp(4, F ) with trivial central character,
and the Oldforms Principle for all paramodular, non-supercuspidal represen-
tations. A consequence is the uniqueness at the minimal paramodular level,
and, using double coset methods, we also compute the Atkin–Lehner eigenval-
ues of the newforms in all non-supercuspidal representations. A corollary of
this is the formula expressing the ε-factor of the L-parameter of a paramod-
ular non-supercuspidal representation in terms of the minimal paramodular
level and the Atkin–Lehner eigenvalue as in Theorem 7.5.9.

The basic idea is straightforward. By fundamental theory, every non-
supercuspidal, irreducible, admissible representation of GSp(4, F ) with trivial
central character is an irreducible subquotient of a representation parabol-
ically induced from an irreducible supercuspidal representation on the Levi
component of a proper parabolic subgroup of GSp(4, F ). Parabolically induced
representations, in turn, have models as subspaces of functions on GSp(4, F )
that transform on the left according to representations of the Borel, Klingen,
or Siegel parabolic subgroups, which we denote by B, Q and P , respectively.
Paramodular vectors of level n in such representations are thus determined
by their values on the elements of one of the double coset spaces

B\GSp(4, F )/K(pn), Q\GSp(4, F )/K(pn), P\GSp(4, F )/K(pn).

Thus, given explicit double coset representatives, paramodular vectors in non-
supercuspidal representations can be studied in a relatively concrete setting.

The implementation of this idea begins with an initial observation and
computation. Thanks to the work [ST], the composition series of represen-
tations parabolically induced from an irreducible, supercuspidal representa-
tion on the Levi component of a proper parabolic subgroup of GSp(4, F ) are
known, and there is a resulting classification of the non-supercuspidal, irre-
ducible, admissible representations of GSp(4, F ) with trivial central character.
See Sect. 2.2. A representation parabolically induced from an irreducible, su-
percuspidal representation on the Levi component of B, Q or P can have
either one, two, or four irreducible subquotients. Conveniently, however, ev-
ery non-supercuspidal, irreducible, admissible representation of GSp(4, F ) can
be explicitly realized as the second or fourth element of a short exact sequence

0→ π → Π → π′ → 0

where π and π′ are irreducible, admissible representations of GSp(4, F ), and
Π is parabolically induced from an irreducible, admissible representation on
the Levi component of Q or P . See Sect. 2.2 and especially (2.9), (2.10) and
(2.11). Thus, the first step is to compute the paramodular vectors of all levels
in all such representationsΠ with trivial central character. WhenΠ is induced
from the Siegel parabolic P this is carried out in Theorem 5.2.2, and when
Π is induced from the Klingen parabolic Q this appears in Theorem 5.4.2. In
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particular, if Π is paramodular, then the space of paramodular vectors in Π
at the minimal level is one-dimensional and spanned by a vector supported
on an explicit coset, so that we can speak of an essentially unique newform in
Π.

The first application is to the determination of the dimensions of spaces
of paramodular vectors of fixed level in all non-supercuspidal, irreducible,
admissible representations of GSp(4, F ) with trivial central character. The
analysis begins by noting that, by P3-theory, representations of type VIb,
VIIb and IXb are never paramodular. Next, if the representation is induced
from the Siegel or Klingen parabolic subgroup, then the dimensions are im-
mediately computed by the theorems mentioned in the last paragraph; these
are the representations of type I, IIa, IIb, IIIa, IIIb, VII and X. To handle
the remaining types we first of all note that several are the second or fourth
elements of a short exact sequence as above such that the remaining elements
of the sequence have known paramodular dimensions; again, the middle ele-
ment Π is covered by the theorems mentioned in the last paragraph. For such
types, the paramodular dimensions follow immediately by subtraction. The
types covered by this technique are IVa, IVb, IVc, VIa, VIc, VId and IXa.
The remaining types are now Va, Vb, Vc, Vd, XIa and XIb. To deal with
these cases we continue to use short exact sequences; now, however, the sec-
ond and fourth elements both have unknown paramodular dimensions. The
appropriate short exact sequences involve what we call Saito–Kurokawa rep-
resentations. To define these representations, let π be an infinite-dimensional,
irreducible, admissible representation of GL(2, F ) with trivial central charac-
ter such that π � ν3/2×ν−3/2, and let σ be a character of F× such that σ2 = 1.
Then the representation ν1/2π o ν−1/2σ has a unique, non-zero, irreducible
quotient Q(ν1/2π, ν−1/2) and a unique, non-zero, irreducible subrepresenta-
tion G(ν1/2π, ν−1/2σ), so that there is short exact sequence of representations
of GSp(4, F ) with trivial central character:

0→ G(ν1/2π, ν−1/2σ)→ ν1/2π o ν−1/2σ → Q(ν1/2π, ν−1/2σ)→ 0.

We call Q(ν1/2π, ν−1/2σ) a Saito–Kurokawa representation. This representa-
tion is non-generic, and many non-generic paramodular representations are
Saito–Kurokawa. The representation G(ν1/2π, µ−1/2σ) is generic, and we re-
fer to it as the generic companion of Q(ν1/2π, ν−1/2σ). The Saito–Kurokawa
representations are those of type IIb, Vb, Vc, VIc and XIb; their generic com-
panions are the representations of type IIa, Va, VIa and XIa. To analyze the
paramodular vectors in Q(ν1/2π, ν−1/2σ) and G(ν1/2π, ν−1/2σ) we use our
explicit knowledge of the paramodular vectors in representations of the form
νsπoν−sσ for s ∈ C and the level raising operators θ, θ′ and η. With an under-
standing of the paramodular dimensions in Saito–Kurokawa representations
and their companions, only representations of type Vd remain. Such represen-
tations now fit into the first type of short exact sequences as above, completing
the computation of paramodular dimensions for all non-supercuspidal repre-
sentations.
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The second application of double cosets is the proof of the Oldforms
Principle for paramodular, non-supercuspidal, irreducible, admissible repre-
sentations of GSp(4, F ) with trivial central character. To begin, generic non-
supercuspidal representations are dealt with using a combination of P3-theory
and the now available paramodular dimensions. If (π, V ) is generic and W
is a non-zero element of V (Nπ), then by P3-theory the vectors θ′iθiηkW
in V (n) for i + j + 2k = n are linearly independent and have cardinality
[(n−Nπ + 2)2/4]; by the above, this is, in fact, the dimension of V (n), prov-
ing the Oldforms Principle for π. The majority of the remaining paramodular,
non-supercuspidal representations are Saito–Kurokawa. For these representa-
tions the Oldforms Principle is proven in conjunction with the computation
of paramodular dimensions. The remaining types of representations are orga-
nized into pairs: IIIb and IVc; IVb and VId; and IVd and Vd. Paramod-
ular representations of type IIIb and IVc are irreducible subquotients of
νs o ν−s/21GSp(2) for some s ∈ C. We prove the Oldforms Principle for
these representations by computing the matrices of θ and θ′ in the standard
bases for V (n) and V (n + 1) corresponding to the double cosets that sup-
port paramodular vectors. Representations of type IVb and VId are treated
similarly, with νs1GL(2) o ν−s replacing νs o ν−s/21GSp(2). Turning to the re-
maining pair, the Oldforms Principle is clear for paramodular representations
of type Vd since the sequence of paramodular dimensions in these represen-
tations is 1, 0, 1, 0, . . . and η is injective. Similarly, the paramodular represen-
tations of type IVd are of the form σ1GSp(4) for σ an unramified character of
F× such that σ2 = 1. For these representations the paramodular dimensions
are 1, 1, 1, . . . and the Oldforms Principle follows from the injectivity of θ′.

Finally, we use the double coset method to compute the Atkin–Lehner
eigenvalues of the newforms in paramodular, non-supercuspidal, irreducible,
admissible representations of GSp(4, F ) with trivial central character. As in
the previous applications, the initial computation considers representations
Π parabolically induced from an irreducible, admissible representation on the
Levi component of Q or P . When the inducing data is infinite-dimensional,
the Atkin–Lehner eigenvalue of the newform in such a Π is computed in
Lemma 5.7.1. Case-by-case arguments as above then determine the Atkin–
Lehner eigenvalue in all paramodular, non-supercuspidal representations. The
table below summarizes the results obtained using double cosets.

Generic
non-supercuspidal
representations

:
dim V (n) for all n,
Oldforms Principle,

Atkin-Lehner eigenvalues

Generic
supercuspidal

representations
: ∗

Non-generic
non-supercuspidal
representations

:
dim V (n) for all n,
Oldforms Principle,

Atkin–Lehner eigenvalues

Non-generic
supercuspidal

representations
: ∗

Fig. 1.3. Major contributions of the double coset method.
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The double coset method also serves as a tool in the computation of Hecke
eigenvalues, and is thus involved in our next method.
Hecke operators. We use Hecke operators to prove the remaining assertions of
this monograph. Let π be an irreducible, admissible representation GSp(4, F )
with trivial central character. After the application of the first two methods,
the key issues are now: when π is generic, the computation of the zeta integrals
of Hecke eigenforms in V (Nπ) in terms of eigenvalues; when π is generic and
supercuspidal, the proof of uniqueness at the minimal paramodular level and
the Oldforms Principle; and when π is paramodular, the computation of the
applicable L-factor of π in terms of the Hecke eigenvalues of the newform.

The first step is to prove that the zeta integral of a Hecke eigenform at the
minimal paramodular level in a generic representation is recursively computed
by its eigenvalues. Assume that π is generic, and let W be a non-zero element
of the non-zero space V (Nπ); recall that, except if π is non-supercuspidal, we
do not know at this point that V (Nπ) is one-dimensional. By the η Principle,
W is determined by the numbers

ci,j = W (∆i,j), ∆i,j =


$2i+j

$i+j

$i

1


for i, j ≥ 0. In fact, the η Principle asserts that W is determined by just
the numbers c0,j for j ≥ 0, and computing Z(s,W ) amounts to determining
these numbers. The key observation now is that Theorem 7.5.4 predicts that
Z(s,W ) should be of the form 1/P (q−s), and therefore the numbers c0,j for
j ≥ 0 should be recursively determined. One approach to proving this, and
thus computing Z(s,W ), is to apply endomorphisms T of V (Nπ) to W . Since
V (Nπ) should be one-dimensional, one might further assume that W is an
eigenform for T . If T had a convenient formula, then an equality TW = aW
would imply a relation between the numbers ci,j for i, j ≥ 0. What endomor-
phisms T should be considered? Let

g =


$
$

1
1

 and g′ =


$2

$
$

1

 .
Then (π(g)W )(∆i,j) = ci,j+1 and (π(g)W )(∆i,j) = ci+1,j for all i and j.
Thus, π(g) and π(g′) translate j and i by a unit, respectively. If π(g) and
π(g′) preserved V (Nπ), then the theory would be simple. Instead, however,
π(g) and π(g′) must be composed with the projection of V onto V (Nπ). The
results are the operators T0,1 and T1,0, respectively; note that the actions of
π(g) and π(g′) on i and j explain the names of T0,1 and T1,0. By computing
left coset representatives we obtain workable formulas for T0,1 and T1,0, and
further computations prove that if T0,1W = λW and T1,0W = µW for some
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complex numbers λ and µ, then the sequence c0,j for j ≥ 0 is recursively
defined. The result is that if W in V (Nπ) is an eigenform, then

Z(s,W ) = (1− q−1)W (1)L(s, λ, µ),

where L(s, λ, µ) is defined by the formulas in i), ii) and iii) of Theorem 7.5.3 or
Theorem 7.5.9. An immediate consequence of this formula and the η Principle
is that if L(s, π) = 1, then necessarily L(s, λ, µ) = 1, so that Z(s,W ) =
(1− q−1)W (1), λ = 0 and µ = −q2.

We use this formula, along with some additional facts about T0,1 and T1,0,
to prove uniqueness at the minimal paramodular level when π is generic and
supercuspidal. The first extra ingredient asserts that T0,1 and T1,0 commute as
endomorphisms of V (Nπ). In fact, we prove the more general assertion that if
π is any irreducible, admissible representation of GSp(4, F ) with trivial central
character and n ≥ 2, then

T0,1T1,0 − T1,0T0,1 = q2(θδ1 − θ′δ2),

where both sides are regarded as endomorphisms of V (n). Here, δ1 and δ2 are
certain level lowering operators from V (n) to V (n − 1). When π is unitary,
e.g., when π is supercuspidal, then we also prove that the endomorphisms T0,1

and T1,0 of V (n) are self-adjoint and hence diagonalizable. With these two ad-
ditional facts, the proof of uniqueness at the minimal level for generic, super-
cuspidal representations is succinct: Since the endomorphisms T0,1 and T1,0 of
V (Nπ) are simultaneously diagonalizable, the space V (Nπ) is the direct sum
of the common eigenspaces. By the last paragraph, since L(s, π) = 1, there is
only one eigenspace, and for this eigenspace λ = 0 and µ = −q2; therefore, for
any W ∈ V (Nπ), we have Z(s,W ) = (1− q−1)W (1). Uniqueness follows now
from the η Principle, which asserts that at the minimal paramodular level
there are no vectors with trivial zeta integral except the zero vector.

With all of this theory, the proof of the Oldforms Principle for supercuspi-
dal, generic representations is also compact. As explained in the discussion on
P3-theory, to prove the Oldforms Principle for π it suffices to prove that the
dimension of V (n) is at most [(n−Nπ+2)2/4] for n ≥ Nπ, so that, in fact, this
is the dimension of V (n). As a consequence of Z(s,Wπ) = 1 = L(s, π) for an
appropriate normalization Wπ of the essentially unique newform in V (Nπ), we
have ε(s, π) = επq

−Nπ(s−1/2). Using this in combination with the functional
equation one can prove that if W ∈ V (n), then Z(s,W ) is a polynomial in
q−s of degree at most n − Nπ. Therefore, the dimension of V (n) is at most
n−Nπ + 1 plus the dimension of the space of degenerate vectors in V (n). By
the η Principle, this last dimension is the dimension of V (n−2); by induction
this is in turn [(n−2−Nπ+2)2/4]. Adding, the dimension of V (n) is at most
[(n−Nπ + 2)2/4], as desired.

Finally, by computing the eigenvalues of the newforms in all paramodu-
lar, irreducible, admissible representations π of GSp(4, F ) with trivial cen-
tral character, we verify that L(s, π) = L(s, λπ, µπ) if π is generic and
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L(s, ϕπ) = L(s, λπ, µπ) if π is non-supercuspidal and ϕπ is the L-parameter
of π. Hecke eigenvalues for generic π with L(s, π) = 1 have already been
computed. To compute the Hecke eigenvalues for the remaining paramodu-
lar representations we apply two subsidiary computations. First, we compute
the Hecke eigenvalues of the newform in representations parabolically induced
from an irreducible, admissible representation on the Levi component of Q or
P . As it happens, in the case of the Klingen parabolic subgroup Q, we need
only consider the representation χoσStGSp(2) for χ and σ unramified charac-
ters of F× with χσ2 = 1; this representation has minimal paramodular level
Nπ = 2. Second, to compute the Hecke eigenvalues for the generic compan-
ions of some Saito–Kurokawa representations we use commutation relations
between T0,1 and T1,0 and the level raising operators θ and θ′. For level n ≥ 2,
the relations are:

T0,1 ◦ θ′ = θ′ ◦ T0,1 + q2θ − η ◦ δ2,
T0,1 ◦ θ = θ ◦ T0,1 + q2θ′ − η ◦ δ1,
T1,0 ◦ θ′ = θ′ ◦ T1,0 + q3θ′ − q η ◦ δ3,
T1,0 ◦ θ = q T0,1 ◦ θ′ − q2(q + 1) θ.

Again, δ1, δ2 and δ3 are certain natural level lowering operators from V (n) to
V (n− 1).

The next chart lists the results proven using Hecke operators. On the next
page, another chart gives an overview of the implications between the chief
results of this work.

Generic
non-

supercuspidal
representations

:
Formula for Z(s, W ),
L(s, π) = L(s, λπ, µπ),
L(s, ϕπ) = L(s, λπ, µπ)

Generic
supercuspidal

representations
:

Formula for Z(s, W ),
Uniqueness,

L(s, π)=L(s, λπ, µπ),
Oldforms Principle

Non-generic
non-

supercuspidal
representations

: L(s, ϕπ) = L(s, λπ, µπ)
Non-generic

supercuspidal
representations

: ∗

Fig. 1.4. Major contributions of Hecke operators.
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η Principle P

Uniqueness

λπ, µπ for
generic π

with L(s, π) = 1

Uniqueness for
supercuspidal

representations

Uniqueness for
non-supercuspidal

representations D

Z(s, Wπ) = L(s, π)
for generic π

Z(s, W ) = (1− q−1)W (1)L(s, λπ, µπ)

for W at minimal level in generic π H

L(s, π) = L(s, λπ, µπ)
for generic π

ε(s, π) = επq−Nπ(s−1/2)

for generic π

λπ, µπ for
non-supercuspidal π

H, D

Nπ, επ for
non-supercuspidal π

D, P

L(s, ϕπ) = L(s, λπ, µπ)

for non-supercuspidal π D

ε(s, ϕπ) = επq−Nπ(s−1/2)

for non-supercuspidal π

List of ϕπ for
non-supercuspidal π

π tempered:
π paramodular
⇐⇒ π is generic

Desiderata of the
local Langlands correspondence,

dual groups

Non-generic
supercuspidals

are not

paramodular P

Oldforms
obtained via

θ′, θ, η D
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Fig. 1.5. Relations between major results. The symbols P , D and H indicate
the use of P3-theory, double coset decompositions, and Hecke operators, respectively.
The factor L(s, λπ, µπ) is defined by the formulas in i), ii) and iii) of Theorem 7.5.3
or Theorem 7.5.9. The dashed arrows indicate motivation.





2

Representation Theory

This chapter has two main themes. The first theme concerns the non-
supercuspidal representations of GSp(4) over a non-archimedean local field.
These representations were classified by Sally and Tadić and we summarize
their work. Using this classification, we find it convenient to list and name all
non-supercuspidal representations in the form of the fundamental Table A.1.
With this list at hand we consider the conjectural local Langlands correspon-
dence for GSp(4) as regards non-supercuspidal representations. As it happens,
the desiderata of the conjectural local Langlands correspondence determine
the L-parameters attached to all non-supercuspidal representations, and we
describe these L-parameters explicitly.

The second main theme of this chapter concerns a type of Kirillov theory,
called P3-theory, for representations of GSp(4) with trivial central character,
and the application of this theory to the theory of zeta integrals for generic
representations. We give complete definitions and proofs of the basic theory
of zeta integrals.

2.1 Definitions

The definitions made in this section will be used throughout this monograph.
In addition, we also make some basic observations.

The Base Field F

Until the end of this monograph F is a nonarchimedean local field of charac-
teristic zero. We denote by o the ring of integers of F , and we let p be the
maximal ideal of o. Let q be the number of elements of o/p. Once and for
all, we fix a generator $ for the ideal p. If x is in F×, then we define v(x)
to be the unique integer such that x = u$v(x) for some unit u in o×. We
write ν(x) or |x| for the normalized absolute value of x; thus ν($) = q−1.
Throughout this work we use the Haar measure on F that assigns o volume
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1, and we use the Haar measure on F× defined by d×x = dx/| · |, where dx
is our Haar measure on F . We use the convention that 1 + $0o means o×.
We fix a continuous homomorphism ψ : F → C1 such that ψ(o) = 1 but
ψ(p−1) 6= 1. If χ : F× → C× is a continuous homomorphism, then we let a(χ)
be the smallest non-negative integer n such that χ(1+$no) = 1. We say that
a(χ) is the conductor of χ. If S is a set and A1, . . . , An are subsets of S, then
S = A1 t · · · t An means that S is the union of A1, . . . , An and the Ai are
mutually disjoint.

GSp(4) and its Parabolic Subgroups

We define GSp(4, F ) to be the subgroup of GL(4, F ) consisting of all g such
that tgJg = λJ for some λ ∈ F×. If such a λ exists for g, then it is unique,
we denote it by λ(g), and call it the multiplier of g. Here, J is the element

J =


1

1
−1

−1


of GL(4, F ). As will be the case whenever we write matrices, blank entries are
taken to be the zero of F . Several subgroups of GSp(4, F ) will be important.
The subgroup of GSp(4, F ) of all elements g such that λ(g) = 1 is called
Sp(4, F ). The subgroup of GSp(4, F ) comprised of all elements

z
z
z
z

 , z ∈ F×

will be denoted by Z. This subgroup lies in the center of GSp(4, F ). The
Borel subgroup B of GSp(4, F ) consists of all upper triangular matrices in
GSp(4, F ). It is convenient to write this definition as

B =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

 .
We will define other subgroups of GSp(4, F ) using this notation. Every element
of B can be written in the form

g =


a
b
cb−1

ca−1




1
1 x

1
1




1 λ µ κ
1 µ

1 −λ
1


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where a, b, c ∈ F× and x, λ, µ, κ ∈ F . Evidently, λ(g) = c. The subgroup
of B of elements which have 1 in every entry on the main diagonal will be
denoted by U . The diagonal subgroup of GSp(4, F ) will be called T . The Siegel
parabolic subgroup of GSp(4, F ) is

P =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

 .
Every element of P can be written in the form

p =


a b
c d

λa/∆ −λb/∆
−λc/∆ λd/∆




1 µ κ
1 x µ

1
1


where ∆ = ad − bc ∈ F×, λ ∈ F×, and µ, κ, x ∈ F . We have λ(p) = λ. We
will sometimes write

A′ =
[

0 1
1 0

]
tA−1

[
0 1
1 0

]
for A ∈ GL(2, F ). (2.1)

Explicitly, if A =
[
a b
c d

]
, then

A′ =
1

ad− bc

[
a −b
−c d

]
.

Using this notation, a general element in the Levi subgroup of P can be
written as

p =
[
A
λA′

]
, A ∈ GL(2, F ), λ ∈ F×.

The Klingen parabolic subgroup of GSp(4, F ) is

Q =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

 .
Every element of Q can be written in the form

q =


t
a b
c d

∆t−1




1 λ µ κ
1 µ

1 −λ
1


where ∆ = ad− bc ∈ F×, t ∈ F× and λ, µ, κ ∈ F . A computation shows that
λ(q) = ∆. The Jacobi subgroup of Q is
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GJ =


1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1

 .
The Jacobi subgroup is contained in Sp(4, F ). The subgroup

ZJ =


1 ∗

1
1

1


is the center of the Jacobi subgroup GJ . More generally, ZJ is a normal
subgroup of the Klingen parabolic subgroup Q.

Weyl Group Elements

Certain elements of GSp(4, F ) will play an important role in this work. Let
N(T ) be the normalizer in GSp(4, F ) of T = T (F ). Then W = N(T )/T is a
group of order eight. The images of the elements

s1 =


1

1
1

1

 , s2 =


1

1
−1

1


in W generate W . Representatives for the eight elements of W are

s1, s2, s2s1s2, s1s2s1

and
1, s1s2, s2s1, s1s2s1s2.

It is worthwhile to explicitly state s2s1s2 and s1s2s1,

s2s1s2 =


1

1
−1
−1

 , s1s2s1 =


1

1
1

−1

 .
We may identify W with the subgroup of the orthogonal group of the real
plane that maps the unit square into itself, i.e., the dihedral group of order
eight. This is illustrated in the following diagram. The element corresponding
to s1 is the reflection sending α1 to −α1 and the element corresponding to s2
is the reflection sending α2 to −α2.
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The Paramodular Group and Other Congruence Subgroups

This monograph considers the vectors in representations of GSp(4, F ) fixed by
a certain family of compact open subgroups of GSp(4, F ). For a nonnegative
integer n we define K(pn) to be the subgroup of all k in GSp(4, F ) such that
det(k) ∈ o× and

k ∈


o o o p−n

pn o o o
pn o o o
pn pn pn o


and call K(pn) the paramodular group of level pn. The first group K(p0) in the
family is GSp(4, o), a maximal compact subgroup of GSp(4, F ). The second
group K(p1) is the other maximal compact subgroup of GSp(4, F ), up to
conjugacy, and it is this group that is sometimes known in the literature as
the paramodular group. The paramodular group K(pn) is normalized by the
Atkin–Lehner element

un =


1
−1

$n

−$n

 (2.2)

of level pn. Note that u2
n lies in the center of GSp(4, F ). For any nonnegative

integer n the paramodular group K(pn) contains the Weyl group element s2.
Additionally, K(pn) contains the important element

tn =


−$−n

1
1

$n

 ∈ K(pn). (2.3)

Two other families of congruence subgroups of GSp(4, F ) will be impor-
tant. We define the Siegel congruence subgroup of level pn to be the subgroup
Si(pn) of all k in GSp(4, F ) such that det(k) ∈ o× and
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k ∈


o o o o
o o o o
pn pn o o
pn pn o o

 . (2.4)

We define the Klingen congruence subgroup of level pn to be the subgroup
Kl(pn) of GSp(4, F ) consisting of all k such that det(k) ∈ o× and

k ∈


o o o o
pn o o o
pn o o o
pn pn pn o

 . (2.5)

The Siegel congruence subgroup Si(pn) is normalized by un, but the Klingen
congruence subgroup Kl(pn) is not. In fact, the group generated by Kl(pn) and
unKl(pn)u−1

n is the paramodular group K(pn) (see Lemma 3.3.1 for a more
precise statement). It is easy to prove that the Iwahori factorization holds for
the Siegel and Klingen congruence subgroups, i.e., for any n ≥ 1,

Si(pn) =


1

1
pn pn 1
pn pn 1




o o
o o

o o
o o




1 o o
1 o o

1
1



=


1 o o

1 o o
1

1




o o
o o

o o
o o




1
1

pn pn 1
pn pn 1

 (2.6)

and

Kl(pn) =


1
pn 1
pn 1
pn pn pn 1




o×

o o
o o

o×




1 o o o
1 o

1 o
1



=


1 o o o

1 o
1 o

1




o×

o o
o o

o×




1
pn 1
pn 1
pn pn pn 1

 . (2.7)

In this work, the Klingen congruence subgroup will play a much bigger role
than the Siegel congruence subgroup.

General Representation Theory

In this monograph we will use the following definitions concerning representa-
tion theory. Let G be a group of td-type, as in [Car], with a countable basis.
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Let S(G) be the complex vector space of all locally constant, compactly sup-
ported complex valued functions on G. A representation of G is a complex
vector space V along with a homomorphism π of GSp(4, F ) into the group
Aut(V ) of invertible C-linear endomorphisms of V . Such a representation will
be written as a pair (π, V ) or just π. A representation (π, V ) is smooth if
every vector in V is fixed by an open-compact subgroup K of G. We say that
(π, V ) is admissible if π is smooth and the multiplicities of each K-type are
finite for each such compact-open subgroup K of G. A smooth representation
(π, V ) is irreducible if the only G subspaces of V are 0 and V . If (π, V ) is
a smooth representation of G, then an irreducible constituent or irreducible
subquotient of π is an irreducible representation of G that is isomorphic to
W/W ′, where W ′ ⊂W ⊂ V are G subspaces of V . The smooth contragredient
representation of π is π∨, and if π admits a central character, then we denote
it by ωπ. A character of G is a smooth one-dimensional representation of G,
i.e., a continuous homomorphism from G to C×. We let 1G denote the trivial
representation of G, i.e., the trivial character of G. If π is a representation of
G and G is contained as a normal subgroup in another group G′ of td-type,
then we let g′π be the representation of G with the same space as π and
action defined by (g′π)(g) = π(g′−1gg′). A representation of G is unitary if
there exists a nondegenerate G-invariant Hermitian form on the space of π.
Let H be a closed subgroup of G, and let (π, V ) be a smooth representation of
H. Then c-IndGHπ is the representation of G whose space is the vector space
of all functions f : G→ V such that f(hg) = π(h)f(g) for h ∈ H and g ∈ G,
there exists a compact, open subgroup K of G such that f(gk) = f(g) for
k ∈ K and g ∈ G, and there exists a compact subgroup X ⊂ G such that
f vanishes off of HX. Suppose G is unimodular, and M and U are closed
subgroups of G such that M normalizes U , M ∩ U = 1, P = MU is closed in
G, U is unimodular, and P\G is compact. Fix a Haar measure du on U . For
p ∈ P let δP (p) be the positive number such that for all f ∈ S(U),∫

U

f(p−1up) du = δP (p)
∫
U

f(u) du.

We call δP : P → C× the modular character of P . Suppose that σ is a smooth
representation of M . Then IndGPσ is the representation of G by right trans-
lation on the complex vector space of smooth functions f on G with values
in σ such that f(mug) = δP (m)1/2σ(m)f(g) for m ∈ M , u ∈ U and g ∈ G.
If π is a smooth representation of G, then the normalized Jacquet module
RU (π) is the smooth representation of M defined by RU (π) = πU ⊗ δ−1/2

P ,
where πU is the quotient of π by the C-subspace generated by the vec-
tors v − π(u)v for v ∈ π and u ∈ U . We define RU (π) = RU (π∨)∨. If π
is a smooth representation of G and σ is a smooth representation of M ,
then we have Frobenius reciprocity: HomG(π, IndGPσ) ∼= HomM (RU (π), σ)
and HomG(IndGPσ, π

∨) ∼= HomM (σ,RU (π)∨). If π is admissible we also have
HomG(IndGPσ, π) ∼= HomM (σ,RU (π)).
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Generic Representations of GSp(4, F )

Let ψ be our fixed non-trivial additive character of F . Every other such charac-
ter is then of the form x 7→ ψ(cx) for a uniquely determined element c ∈ F×.
Fix c1, c2 ∈ F×, and consider the character ψc1,c2 of U(F ), the unipotent
radical of the Borel subgroup B(F ), given by

ψc1,c2(


1 x ∗ ∗

1 y ∗
1 −x

1

) = ψ(c1x+ c2y).

An irreducible, admissible representation π of GSp(4, F ) is called generic if
HomU(F )(π, ψc1,c2) 6= 0. This definition does not depend on the choice of c1
or c2. If π is generic, then there exists a Whittaker model for π with respect
to ψc1,c2 , i.e., π can be realized as a space of functions W : GSp(4, F ) → C
that satisfy the transformation property

W (


1 x ∗ ∗

1 y ∗
1 −x

1

 g) = ψ(c1x+ c2y)W (g), all g ∈ GSp(4, F ),

and GSp(4, F ) acts on this space by right translations. By [Rod], such a
Whittaker model is unique. We denote it by W(π, ψc1,c2). In this work, when
working with W(π, ψc1,c2), we will always assume that c1 and c2 are in o×.

Contragredients of Representations of GSp(4, F )

Suppose that π is an irreducible, admissible representation of GSp(4, F ) with
trivial central character. Then the contragredient of π is π: π∨ ∼= π. This
follows from the Theorem on p. 91 of [MVW]. For this, we note that by
Appendix A.7 we can identify π with an irreducible representation of SO(5, F ),
and that O(5, F ) is the direct product of SO(5, F ) with the subgroup {1,−1}.

A Useful Identity

We will often use the following identity for x ∈ F×:[
1
x 1

]
=

[
1 x−1

1

] [
−x−1

−x

] [
1

−1

] [
1 x−1

1

]
. (2.8)

2.2 Parabolically Induced Representations

The irreducible, admissible representations of GSp(4, F ) come in two classes.
The first class consists of all those representations that can be obtained as sub-
quotients of parabolically induced representations from one of the parabolic
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subgroups B, P or Q. Thanks to the work of Sally and Tadić in [ST], these
representations have been classified and described, and we reproduce their list.
The second class consists of all the other representations; these representations
are called supercuspidal. In this work we will not need explicit descriptions of
the supercuspidal representations.

Parabolic Induction

First we explain parabolic induction from B. Let χ1, χ2 and σ be characters
of F×, and consider the character of B(F ) given by

a ∗ ∗ ∗
b ∗ ∗
cb−1 ∗

ca−1

 7−→ χ1(a)χ2(b)σ(c).

The representation of GSp(4, F ) obtained by normalized parabolic induction
of this character of B(F ) is denoted by χ1×χ2oσ. The standard model of this
representation consists of all locally constant functions f : GSp(4, F ) → C
that satisfy the transformation property

f(hg) = |a2b||c|−3/2χ1(a)χ2(b)σ(c)f(g) for all h =


a ∗ ∗ ∗
b ∗ ∗
cb−1 ∗

ca−1

 .
Note here that the modular character of B is given by δB(h) = |a|4|b|2|c|−3.
The group GSp(4, F ) acts on this space by right translations. The central
character of χ1 × χ2 o σ is χ1χ2σ

2.
We turn to parabolic induction from P . Let (π, V ) be an admissible repre-

sentation of GL(2, F ), and let σ be a character of F×. Then we denote by πoσ
the representation of GSp(4, F ) obtained by normalized parabolic induction
from the representation of P (F ) on V given by[

A ∗
cA′

]
7−→ σ(c)π(A)

(see (2.1) for the A′ notation). Since the modular character of P is given by

δP (
[
A ∗
cA′

]
) = |det(A)|3|c|−3, the standard space of π o σ consists of all

locally constant functions f : GSp(4, F )→ V that satisfy the transformation
property

f(hg) = |det(A)c−1|3/2σ(c)π(A)f(g) for all h =
[
A ∗
cA′

]
∈ P (F ).

If π has central character ωπ, then the central character of π o σ is ωπσ2.
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Finally we consider parabolic induction from Q. Let χ be a character of
F×, and let (π, V ) be an admissible representation of GL(2, F ) (for systematic
reasons, this GL(2, F ) should really be considered as the symplectic similitude
group GSp(2, F )). Then we denote by χo π the representation of GSp(4, F )
obtained by normalized parabolic induction from the representation of Q(F )
on V given by

t ∗ ∗ ∗
a b ∗
c d ∗

∆t−1

 7−→ χ(t)π(
[
a b
c d

]
) (∆ = ad− bc).

The standard space of χ o π consists of all locally constant functions f :
GSp(4, F )→ V that satisfy the transformation property

f(hg) = |t2(ad− bc)−1|χ(t)π(
[
a b
c d

]
)f(g) for all h =


t ∗ ∗ ∗
a b ∗
c d ∗

∆t−1

 ,
because the modular character of Q is given by δQ(h) = |t|4|ad − bc|−2. If π
has central character ωπ, then the central character of χo π is χωπ.

Twisting

If τ is a character of F× and (π, V ) is a representation of GSp(4, F ), then we
define a new representation τπ on the same space V by

(τπ)(g) = τ(λ(g))π(g),

where λ is the multiplier homomorphism GSp(4, F ) → F×. We call τπ the
twist of the representation π by the character τ . The central character of τπ
is the central character of π multiplied by τ2. One checks easily that twisting
has the following effect on representations parabolically induced from B, P
and Q, respectively:

τ(χ1 × χ2 o σ) ∼= χ1 × χ2 o τσ,

τ(π o σ) ∼= π o τσ,

τ(χo π) ∼= χo τπ.

In these formulas, π is a representation of GL(2, F ) as before.

The List of Representations

In this section, using the results of [ST], we describe a useful listing of the non-
supercuspidal, irreducible, admissible representations of GSp(4, F ). The basis
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for this list is the fact that every non-supercuspidal, irreducible, admissible
representation of GSp(4, F ) is an irreducible constituent (irreducible subquo-
tient) of a parabolically induced representation with proper supercuspidal
inducing data. Given this, one might try to classify the non-supercuspidal,
irreducible, admissible representations of GSp(4, F ) by doing the following:
First, write down all the supercuspidal inducing data for the Borel, Klingen
and Siegel parabolic subgroups of GSp(4, F ). Second, determine the Lang-
lands classification data of all the constituents of all the resulting parabol-
ically induced representations. Third, find all the possible ways in which a
fixed non-supercuspidal, irreducible, admissible representation of GSp(4, F )
arises as a constituent in the second step; the results of this step may show
that some of the supercuspidal inducing data from the first step is redundant
from the point of view of listing all representations. Finally, write down a list
of the non-supercuspidal, irreducible, admissible representations of GSp(4, F )
that includes all such representations and is as convenient as possible. In, fact,
the paper [ST] has carried out the difficult aspects of this procedure. The re-
sulting list appears in tabulated form in Table A.1, and to understand the
table the reader should consult the following.

First of all, it turns out that eleven groups of supercuspidal inducing data
are required. Below, we list these eleven groups and the corresponding con-
stituents of the parabolically induced representations. Groups I to VI contain
representations supported in B, i.e., these representations are constituents of
induced representations of the form χ1 × χ2 o σ. Groups XII, XIII and IX
contain representations supported in Q, i.e., they are constituents of induced
representations of the form χ o π, where π is a supercuspidal representation
of GL(2, F ). Finally, groups X and XI contain representations supported in
P , i.e., they are constituents of induced representations of the form π o σ,
where π is a supercuspidal representation of GL(2, F ). In this work, if π is a
constituent of the parabolically induced representation with supercuspidal in-
ducing data of Group A, where “A” is the name of the group, then we will say
that π belongs to Group A or that π is a Group A representation. Sometimes,
in this context, we will use the word “Type” instead of “Group”.

Group I. These are the irreducible representations of the form χ1×χ2 oσ,
where χ1, χ2 and σ are characters of F×. The induced representation χ1 ×
χ2 o σ is irreducible if and only if χ1 6= ν±1, χ2 6= ν±1 and χ1 6= ν±1χ±1

2 .
Group II. Let χ be a character of F× such that χ 6= ν±3/2 and χ2 6= ν±1.

Then ν1/2χ× ν−1/2χo σ decomposes into two irreducible constituents

IIa : χStGL(2) o σ and IIb : χ1GL(2) o σ

by [ST] Lemmas 3.3 and 3.7. Here StGL(2) denotes the Steinberg representation
and 1GL(2) denotes the trivial representation of GL(2, F ). Note that these are
the two constituents of the standard induced representation ν1/2 × ν−1/2 of
GL(2, F ). The representation IIa is a subrepresentation and IIb is a quotient
of ν1/2χ×ν−1/2χoσ. These representations can also be written as Langlands
quotients,
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χStGL(2) o σ =
{
L(χStGL(2) o σ) if e(χ) = 0,
L(χStGL(2), σ) if 0 < e(χ),

χ1GL(2) o σ =


L(ν1/2χ, ν1/2χ−1, ν−1/2χσ) if 0 ≤ e(χ) < 1/2,
L(ν1/2χ, ν−1/2χo σ) if e(χ) = 1/2,
L(ν1/2χ, ν−1/2χ, σ) if 1/2 < e(χ).

Here, the real number e(χ) is the exponent of the character χ, defined by
|χ(x)| = |x|e for all x ∈ F×.

Group III. Let χ be a character of F× such that χ 6= 1F× and χ 6= ν±2.
Then χ× ν o ν−1/2σ decomposes into two irreducible constituents

IIIa : χo σStGSp(2) and IIIb : χo σ1GSp(2)

by [ST] Lemmas 3.4 and 3.9. The representation IIIa is a subrepresentation
and IIIb is a quotient of χ× ν o ν−1/2σ. Written as Langlands quotients we
have

χo σStGSp(2) =
{
L(χo σStGSp(2)) if e(χ) = 0,
L(χ, σStGSp(2)) if 0 < e(χ),

χo σ1GSp(2) =
{
L(ν, χo ν−1/2σ) if e(χ) = 0,
L(χ, ν, ν−1/2σ) if 0 < e(χ).

Group IV. These are the four irreducible constituents of ν2 × ν o ν−3/2σ,
where σ is an arbitrary character of F×. We shall need more precise informa-
tion about the way this induced representation decomposes. By [ST] Lemma
3.5,

ν2 × ν o ν−3/2σ = ν3/2StGL(2) o ν−3/2σ︸ ︷︷ ︸
sub

+ ν3/21GL(2) o ν−3/2σ︸ ︷︷ ︸
quot

= ν2 o ν−1σStGSp(2)︸ ︷︷ ︸
sub

+ ν2 o ν−1σ1GSp(2)︸ ︷︷ ︸
quot

,

and each of the four representations on the right is reducible and has two
irreducible constituents as shown in the following table. The quotients appear
at the bottom and on the right.

ν3/2StGL(2) o ν−3/2σ ν3/21GL(2) o ν−3/2σ

ν2 o ν−1σStGSp(2) σStGSp(4) L(ν2, ν−1σStGSp(2))

ν2 o ν−1σ1GSp(2) L(ν3/2StGL(2), ν
−3/2σ) σ1GSp(4)

(2.9)

Here StGSp(4) is the Steinberg representation of GSp(4, F ), and 1GSp(4) is the
trivial representation of GSp(4, F ).

Group V. These are the four irreducible constituents of νξ × ξ o ν−1/2σ,
where ξ is a non-trivial quadratic character of F×, and where σ is an arbitrary
character of F×. In this case, by [ST] Lemma 3.6,
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νξ × ξ o ν−1/2σ = ν1/2ξ StGL(2) o ν−1/2σ︸ ︷︷ ︸
sub

+ ν1/2ξ 1GL(2) o ν−1/2σ︸ ︷︷ ︸
quot

= ν1/2ξ StGL(2) o ξν−1/2σ︸ ︷︷ ︸
sub

+ ν1/2ξ 1GL(2) o ξν−1/2σ︸ ︷︷ ︸
quot

.

Each of the representations on the right side has two constituents as indicated
in the following table. The quotients appear at the bottom and on the right.

ν1/2ξ StGL(2) o ν−1/2ξσ ν1/2ξ 1GL(2) o ν−1/2ξσ

ν1/2ξ StGL(2) o ν−1/2σ δ([ξ, νξ], ν−1/2σ) L(ν1/2ξ StGL(2), ν
−1/2σ)

ν1/2ξ 1GL(2) o ν−1/2σ L(ν1/2ξ StGL(2), ν
−1/2ξσ) L(νξ, ξ o ν−1/2σ)

(2.10)
Here δ([ξ, νξ], ν−1/2σ) is an essentially square integrable representation. Note
that the representations Vb and Vc are twists of each other, but they are not
equivalent.

Group VI. These are the four irreducible constituents of ν×1F× oν−1/2σ,
where σ is an arbitrary character of F×. By [ST] Lemma 3.8,

ν × 1F× o ν−1/2σ = ν1/2 StGL(2) o ν−1/2σ︸ ︷︷ ︸
sub

+ ν1/2 1GL(2) o ν−1/2σ︸ ︷︷ ︸
quot

= 1F× o σStGSp(2)︸ ︷︷ ︸
sub

+1F× o σ1GSp(2)︸ ︷︷ ︸
quot

,

and each representation on the right side is again reducible. Their constituents
are summarized in the following table, with the quotients appearing at the
bottom and on the right.

ν1/2 StGL(2) o ν−1/2σ ν1/2 1GL(2) o ν−1/2σ

1F× o σStGSp(2) τ(S, ν−1/2σ) τ(T, ν−1/2σ)

1F× o σ1GSp(2) L(ν1/2 StGL(2), ν
−1/2σ) L(ν, 1F× o ν−1/2σ)

(2.11)

The representations τ(S, ν−1/2σ) and τ(T, ν−1/2σ) are essentially tempered
but not square integrable.

Group VII. These are the irreducible representations of the form χ o π,
where π is a supercuspidal representation of GL(2, F ). The condition for ir-
reducibility is that χ 6= 1F× and χ 6= ξν±1, where ξ is a character of order 2
such that ξπ ∼= π.

Group VIII. If π is a supercuspidal representation of GL(2, F ), then 1F×oπ
is a direct sum of two essentially tempered representations τ(S, π) (type VIIIa)
and τ(T, π) (type VIIIb).

Group IX. If ξ is a non-trivial quadratic character of F× and π is a super-
cuspidal representation of GL(2, F ) such that ξπ ∼= π, then νξ o ν−1/2π has
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two irreducible constituents. There is an essentially square-integrable subrep-
resentation δ(νξ, ν−1/2π) (type IXa), and there is a non-tempered quotient
L(νξ, ν−1/2π) (type IXb).

Group X. These are the irreducible representations of the form πoσ, where
π is a supercuspidal representation of GL(2, F ) and σ is a character of F×.
The condition for irreducibility is that π is not of the form ν±1/2ρ with ρ a
supercuspidal representation of GL(2, F ) with trivial central character.

Group XI. If π is a supercuspidal representation of GL(2, F ) with triv-
ial central character, and σ is a character of F×, then ν1/2π o ν−1/2σ has
two irreducible constituents. It contains an irreducible and essentially square-
integrable subrepresentation δ(ν1/2π, ν−1/2σ) (type XIa), and it has a non-
tempered quotient L(ν1/2π, ν−1/2σ) (type XIb).

The main result about these groups of representations is the following:

Theorem 2.2.1 (Sally-Tadić). Let π be a non-supercuspidal, irreducible,
admissible representation of GSp(4, F ). Then π belongs to Group I, II, III,
IV, V, VI, VII, VIII, IX, X or XI. Moreover, if π belongs to Group A, and π
also belongs to Group B, then A = B.

Proof. This follows from the results of [ST]. ut

It is important to realize that the representations of a particular group
will not always be distinct for different choices of the supercuspidal inducing
data. For example, the Group I representation χ1 × χ2 o σ corresponding to
the data (χ1, χ2, σ) is isomorphic to the Group I representation χ2 × χ1 o
σ corresponding to the data (χ2, χ1, σ). However, all such equivalences are
described in [ST].

As we mentioned above, Table A.1 lists the representations of Groups I,
II, III, IV, V, VI, VII, VIII, IX, X and XI. Besides this, the table has some
additional columns. The “tempered” column in Table A.1 states the conditions
on the inducing data under which a representation is tempered. The “ess. L2”
column indicates which of the tempered representations are essentially square-
integrable. The “generic” column indicates the generic representations; see
Sect. 2.1 for the definition of generic representations. In each of the full induced
representations given in the third column of Table A.1 there is exactly one
generic constituent, and it is always a subrepresentation. These results follow
from [ST] and other basic references.

2.3 Dual Groups

Having described the classification of the non-supercuspidal, irreducible, ad-
missible representations of GSp(4, F ), we will now use the desiderata of the
conjectural local Langlands correspondence for GSp(4) to assign L-parameters
to all such representations. One of the desiderata is an algorithm that assigns



2.3 Dual Groups 41

L-packets to non-discrete series L-parameters. Implementation of this algo-
rithm requires detailed knowledge of dual groups, which will be recalled in
this section.

Let G be a connected, reductive, linear, algebraic group over an alge-
braically closed field F̄ . We choose a maximal torus T and a Borel subgroup B
containing T . Let X∗(T ) be the group of algebraic homomorphisms T → Gm,
and let X∗(T ) be the group of algebraic homomorphisms Gm → T . There is
a canonical pairing

〈 , 〉 : X∗(T )×X∗(T ) −→ Z

given by composition. Let Φ ⊂ X∗(T ) be the root system with respect to
T . For α ∈ Φ let α∨ be the corresponding coroot; we have 〈α, α∨〉 = 2. Let
Φ∨ ⊂ X∗(T ) be the set of coroots. Let ∆ ⊂ Φ be the basis of Φ determined
by the choice of B, and let ∆∨ = {α∨ : α ∈ ∆}. Then

Ψ = (X∗(T ), ∆, X∗(T ), ∆∨)

is the based root datum of the group G with respect to the choices of T and
B. By definition, a dual group of G is a pair (Ĝ, ι) consisting of a connected,
reductive, linear, complex, algebraic group Ĝ, equipped with a choice of max-
imal torus T̂ and Borel subgroup B̂ ⊃ T̂ , and an isomorphism ι from the
root datum (X∗(T̂ ), ∆̂, X∗(T̂ ), ∆̂∨) to the dual (X∗(T ), ∆∨, X∗(T ), ∆) of
the root datum of G. By definition, ι is a pair (i, i∨), where

i : X∗(T̂ ) −→ X∗(T ), i∨ : X∗(T ) −→ X∗(T̂ )

are isomorphisms of abelian groups such that

〈y, i(x)〉 = 〈x, i∨(y)〉̂ (2.12)

for x ∈ X∗(T̂ ), y ∈ X∗(T ), such that i(∆̂) = ∆∨, i∨(∆) = ∆̂∨, and such that
the diagram

Φ̂
∨−−−−→ Φ̂∨

i

y xi∨
Φ∨ −−−−→

∨
Φ

commutes.
If M̂ is a standard Levi subgroup of Ĝ, then ι determines a standard Levi

subgroup M of G such that M̂ is a dual group of M . More precisely, let P̂
be a standard parabolic subgroup of Ĝ with Levi subgroup M̂ . Then T̂ is a
maximal torus of M̂ , and M̂ ∩B̂ is a Borel subgroup of M̂ . The corresponding
based root datum of M̂ is

Ψ̂P̂ = (X∗(T̂ ), ∆̂P̂ , X∗(T̂ ), ∆̂P̂
∨),

where ∆̂P̂ is the subset of ∆̂ corresponding to P̂ . Let P be the parabolic
subgroup of G corresponding to the image of ∆̂P̂ under the composition of
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the bijections Φ̂ i−→ Φ∨
∨−→ Φ. Let ∆P be this image. In this situation we say

that P and P̂ are dual ; this provides a bijection between the sets of standard
parabolic subgroups of G and Ĝ. Let M be the Levi subgroup of P containing
T . Then T is a maximal torus of M , and M ∩ B is a Borel subgroup of M .
The corresponding based root datum of M is

ΨP = (X∗(T ), ∆P , X∗(T ), ∆∨P ).

The maps i and i∨ define an isomorphism, which we also call ι, between the
root datum of M̂ and the dual of the root datum of M . Hence (M̂, ι) is a dual
group of M .

We will now consider these definitions in detail for GSp(4). We choose
T and B as before, so that T is the subgroup of diagonal matrices inside
GSp(4, F̄ ), and B is the subgroup of upper triangular matrices. We write a
typical element of T as

t(a, b, c) =


a
b
cb−1

ca−1

 .
We define e1, e2, e3 ∈ X∗(T ) by

e1(t(a, b, c)) = a, e2(t(a, b, c)) = b, e3(t(a, b, c)) = c.

Then X∗(T ) = Ze1 ⊕ Ze2 ⊕ Ze3. Define further f1, f2, f3 ∈ X∗(T ) by

f1(x) = t(x, 1, 1), f2(x) = t(1, x, 1), f3(x) = t(1, 1, x).

The duality between roots and coroots is 〈ei, fj〉 = δi,j . The positive roots
and their corresponding coroots are as follows:

α1 = e1 − e2, α∨1 = f1 − f2,
α2 = 2e2 − e3, α∨2 = f2,

α1 + α2 = e1 + e2 − e3, (α1 + α2)∨ = f1 + f2,

2α1 + α2 = 2e1 − e3, (2α1 + α2)∨ = f1.

With our choice of B we get the system of simple roots ∆ = {α1, α2} and the
corresponding coroots ∆∨ = {α∨1 , α∨2 }.

We make similar choices and definitions for the group GSp(4,C). The
diagonal torus will be denoted by T̂ , and the upper triangular subgroup by
B̂. The basis for X∗(T̂ ) is ê1, ê2, ê3 and the basis for X∗(T̂ ) is f̂1, f̂2, f̂3.

Lemma 2.3.1. Using the above notation concerning the groups GSp(4, F̄ )
and GSp(4,C), there exist exactly two isomorphisms of based root data

(X∗(T̂ ), ∆̂, X∗(T̂ ), ∆̂∨) −→ (X∗(T ), ∆∨, X∗(T ), ∆).
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Proof. If we identify the free abelian groups involved with Z3 via the above
choices of coordinates, the isomorphism i : X∗(T̂ ) → X∗(T ) is given by an
element S ∈ GL(3,Z), and the isomorphism i∨ : X∗(T ) −→ X∗(T̂ ) is given by
an element S∨ ∈ GL(3,Z). The condition (2.12) is equivalent to tS = S∨. The
conditions i(∆̂) = ∆∨, i∨(∆) = ∆̂∨, together with the fact that S ∈ GL(3,Z),
imply, after some calculations, that either

S =

1 1 1
1 1
1 1 2

 (2.13)

or

S =

 −1
−1 −1

−1 −1 −2

 . (2.14)

One checks that with either choice the remaining conditions for an isomor-
phism of root data are also satisfied. ut

In the following, we work with the isomorphism ι determined by the choice
(2.13) for the matrix S, so that (GSp(4,C), ι) is our fixed choice of dual group
for GSp(4, F̄ ). The fixed choice of a dual group determines dual groups for
the Levi subgroups of our standard parabolics in GSp(4, F̄ ), as follows. Using
a previous notation, we have ∆P = {α1} ⊂ ∆ and ∆Q = {α2} ⊂ ∆. Letting
P̂ and Q̂ be standard parabolics in GSp(4,C) dual to P and Q, respectively,
we have ∆P̂ = {α̂2} ⊂ ∆̂ and ∆Q̂ = {α̂1} ⊂ ∆̂. Therefore

P̂ =


∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗

 , MP̂ =


∗
∗ ∗
∗ ∗
∗

 , Q̂ =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗

 , MQ̂ =


∗ ∗
∗ ∗
∗ ∗
∗ ∗


in GSp(4,C). Note that P̂ is now the Klingen parabolic subgroup of GSp(4,C),
and Q̂ is the Siegel parabolic subgroup. As explained above, MP̂ is the dual
group of MP , and MQ̂ is the dual group of MQ; the involved maps of root
data are inherited from ι. Also, ∆B = ∅, ∆B̂ = ∅, B and B̂ are dual, and T̂
is the dual group of T ; again, the map of root data comes from ι.

We fix isomorphisms between the Levi subgroups and products of general
linear groups, as follows.

GL(2,C)×GL(1,C) −→MP̂ , (2.15)

(g, t) 7−→

t g
t−1 det(g)

 ,
GL(2, F̄ )×GL(1, F̄ ) −→MP , (2.16)

(g, t) 7−→
[
g
tg′

]
.
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See (2.1) for the g′ notation. We consider GL(2, F̄ ) × GL(1, F̄ ) as a linear,
reductive group over F̄ . We fix the Borel subgroup consisting of upper trian-
gular matrices, and the maximal torus T2×T1 consisting of diagonal matrices
in each group. Let the root datum of GL(2, F̄ )×GL(1, F̄ ) be

Ξ = (X∗(T2 × T1), Σ, X∗(T2 × T1), Σ∨).

If we define

ẽ1(
[
a
b

]
, t) = a, ẽ2(

[
a
b

]
, t) = b, ẽ3(

[
a
b

]
, t) = t,

f̃1(x) = (
[
x

1

]
, 1), f̃2(x) = (

[
1
x

]
, 1), f̃3(x) = (

[
1

1

]
, x),

then X∗(T2 × T1) = Zẽ1 ⊕ Zẽ2 ⊕ Zẽ3, X∗(T2 × T1) = Zf̃1 ⊕ Zf̃2 ⊕ Zf̃3,
Σ = {ẽ1 − ẽ2} and Σ∨ = {f̃1 − f̃2}. Similar definitions and comments apply
to GL(2,C)×GL(1,C). We will indicate the analogously defined objects with
a hat. In particular, the root datum of GL(2,C)×GL(1,C) is

Ξ̂ = (X∗(T̂2 × T̂1), Σ̂, X∗(T̂2 × T̂1), Σ̂∨).

The isomorphism of groups (2.16) induces an isomorphism of root data
ΨP ∼= Ξ, and hence Ψ∨P ∼= Ξ∨. The isomorphism of groups (2.15) induces
an isomorphism of root data Ψ̂P̂ ∼= Ξ̂. Furthermore, we have the isomorphism
ι : Ψ̂P̂ → Ψ∨P . By composing these isomorphisms, we obtain an isomorphism
κ : Ξ̂ → Ξ∨, as in the following diagram.

Ψ∨P
ι←−−−−
∼

Ψ̂P̂

∼
y y∼
Ξ∨

∼←−−−−
κ

Ξ̂

In addition, there exists the standard isomorphism σ : Ξ̂ → Ξ∨; it is given by
the identity matrix in the bases defined above. We obtain an automorphism
of Ξ̂ given by κ−1 ◦σ. Computations show that this automorphism is induced
by the automorphism of GL(2,C)×GL(1,C) defined by

(g, x) 7−→ (xg′,det(g)x−1). (2.17)

Other automorphisms of GL(2,C) × GL(1,C) induce κ−1 ◦ σ, but any such
two automorphisms differ by an inner automorphism given by a conjugation
with a torus element.

Next we consider the case of the parabolic Q. Similarly to above we fix
isomorphisms

GL(2,C)×GL(1,C) −→MQ̂, (2.18)
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(g, t) 7−→
[
g
tg′

]
,

GL(2, F̄ )×GL(1, F̄ ) −→MQ, (2.19)

(g, t) 7−→

t g
t−1 det(g)

 .
The isomorphism of groups (2.19) induces an isomorphism of root data
ΨQ ∼= Ξ, and hence Ψ∨Q ∼= Ξ∨. The isomorphism of groups (2.18) induces
an isomorphism of root data Ψ̂Q̂ ∼= Ξ̂. Furthermore, we have the isomorphism
ι : Ψ̂Q̂ → Ψ∨Q. By composing these isomorphisms, we obtain an isomorphism
κ : Ξ̂ → Ξ∨, as in the following diagram.

Ψ∨Q
ι←−−−−
∼

Ψ̂Q̂

∼
y y∼
Ξ∨

∼←−−−−
κ

Ξ̂

As above, we obtain an automorphism of Ξ̂ given by κ−1 ◦ σ. Computa-
tions show that this automorphism is induced by the same automorphism of
GL(2,C)×GL(1,C) as defined in (2.17).

Finally we consider the case of the Borel subgroup B. Now we fix the
isomorphisms

GL(1,C)×GL(1,C)×GL(1,C) −→ T̂ (2.20)

and

GL(1, F̄ )×GL(1, F̄ )×GL(1, F̄ ) −→ T (2.21)

given by the common formula

(a, b, c) 7−→


a
b
cb−1

ca−1

 .
Let the root datum of GL(1, F̄ )×GL(1, F̄ )×GL(1, F̄ ) be

Ω = (X∗(T1 × T1 × T1), ∅, X∗(T1 × T1 × T1), ∅).

If we define

ẽ1(a, b, c) = a, ẽ2(a, b, c) = b, ẽ3(a, b, c) = c,

f̃1(x) = (x, 1, 1), f̃2(x) = (1, x, 1), f̃3(x) = (1, 1, x),
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thenX∗(T1×T1×T1) = Zẽ1⊕Zẽ2⊕Zẽ3 andX∗(T1×T1×T1) = Zf̃1⊕Zf̃2⊕Zf̃3.
Similar definitions and comments apply to GL(1,C) × GL(1,C) × GL(1,C).
We will indicate the analogously defined objects with a hat. In particular, the
root datum of GL(1,C)×GL(1,C)×GL(1,C) is

Ξ̂ = (X∗(T̂1 × T̂1 × T̂1), ∅, X∗(T̂1 × T̂1 × T̂1), ∅).

The isomorphism of groups (2.21) induces an isomorphism of root data
ΨB ∼= Ω, and hence Ψ∨B ∼= Ω∨. The isomorphism of groups (2.20) induces
an isomorphism of root data Ψ̂B̂ ∼= Ω̂. Furthermore, we have the isomorphism
ι : Ψ̂B̂ → Ψ∨B . By composing these isomorphisms, we obtain an isomorphism
κ : Ω̂ → Ω∨, as in the following diagram.

Ψ∨B
ι←−−−−
∼

Ψ̂B̂

∼
y y∼
Ω∨

∼←−−−−
κ

Ω̂

As above, we obtain an automorphism of Ω̂ given by κ−1 ◦ σ. Computations
show that this automorphism is induced by the automorphism of GL(1,C)×
GL(1,C)×GL(1,C) defined by

(a, b, c) 7−→ (abc−1, ab−1, ca−1). (2.22)

2.4 The Local Langlands Correspondence

The main purpose of this section is to use some of the desiderata of the
local Langlands correspondence for GSp(4) to assign L-parameters to the
non-supercuspidal representations of GSp(4, F ). After reviewing the two basic
principles derived from the desiderata, we present the list of resulting L-
parameter assignments. The final part of this section recalls the definitions
and essential properties of the L-and ε-factors assigned to representations
of the Weil–Deligne group. The degree 4 and degree 5 L- and ε-factors of
L-parameters of GSp(4) are tabulated in Tables A.8, A.9, A.10 and A.11.
We point out that the statements of this section hold for representations of
GSp(4, F ) with arbitrary central character.

Let WF be the Weil group of F , as in [T]. It comes equipped with an
isomorphism

r : F× −→W ab
F .

We use the convention of (1.4.1) of [T], so that r($) acts by the inverse of
the map x 7→ xq on residue field extensions corresponding to finite unramified
extensions of F . Using the isomorphism r we can identify characters of F×

and characters of WF . In particular, we have the character ν on WF , which is
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the normalized absolute value on F×. Let W ′
F = CoWF be the Weil–Deligne

group; see [T]. The multiplication in this semidirect product is (z, w)(z′, w′) =
(z + ν(w)z′, ww′). Since

W ab
F
∼= W ′

F
ab ∼= F×,

characters of WF , W ′
F and F× can be identified. We shall not distinguish in

notation between a character of F× and the corresponding characters of WF

and W ′
F .

A representation of the Weil–Deligne group is a continuous homomorphism
W ′
F → GL(n,C) such that the restriction to C is complex analytic. There is

a bijection between the set of representations ϕ of W ′
F and the set of pairs

(ρ,N), where ρ is a continuous homomorphism WF → GL(n,C) and N is a
nilpotent n× n matrix such that

ρ(w)Nρ(w)−1 = ν(w)N, w ∈WF .

The bijection is such that ϕ(zw) = exp(zN)ρ(w).
If (ρ,N) is a representation of W ′

F and χ is a character of WF , then
χ(ρ,N) := (χ⊗ ρ,N) is a representation of W ′

F called the twist of (ρ,N) by
χ. The representation (ρ,N) is called admissible if ρ is a semisimple repre-
sentation. It is irreducible if N = 0 and ρ is irreducible. These properties are
preserved under twisting.

Given an n-dimensional semisimple representation ρ of the Weil groupWF ,
then the set of admissible representations ϕ = (ρ′, N ′) of the Weil–Deligne
group W ′

F such that ρ′ = ρ has the following structure. Evidently, (ρ,N) is a
representation of the Weil–Deligne group if and only if N is an element of the
vector space

V nil
ρ = {N ∈ gl(n,C) : N nilpotent, ρ(w)Nρ(w)−1 = ν(w)N for w ∈WF }.

Let C(ρ) = {g ∈ GL(n,C) : gρ(w)g−1 = ρ(w) for all w ∈ WF }. Then C(ρ)
acts on V nil

ρ by conjugation. Two elements N1 and N2 of V nil
ρ are in the same

C(ρ) orbit if and only if the representations (ρ,N1) and (ρ,N2) are equivalent.
Therefore, the set of equivalence classes of the ϕ = (ρ′, N ′) with ρ′ = ρ is in
bijection with the C(ρ) orbits of V nil

ρ .

L-parameters and the Langlands Correspondence

Now let G be a split, connected, reductive, linear, algebraic group over F with
root datum Ψ . We consider triples (ϕ, Ĝ, ι), where (Ĝ, ι) is a dual group for
G, as defined in Sect. 2.3, and ϕ : W ′

F → Ĝ is a homomorphism, such that:

• ϕ is continuous;
• ϕ

∣∣
WF

is semisimple, i.e., ϕ(x) is semisimple for x ∈WF ;
• ϕ

∣∣
C is algebraic, i.e., given by polynomial entries.
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If Ĝ ⊂ GL(n,C) for some n, then ϕ may be regarded as an admissible rep-
resentation of the Weil–Deligne group. In this case we may therefore use the
definitions and observations made above. Let (ϕ, Ĝ, ι) and (φ, G̃, κ) be two
such triples. Let Ψ̂ be the root datum of Ĝ, and let Ψ̃ be the root datum of
G̃. The isomorphism of root data Ψ̂ → Ψ̃ obtained as a composition

Ψ̂
ι−→ Ψ∨

κ−1

−→ Ψ̃

is induced from an isomorphism γ : G̃ → Ĝ (unique up to inner automor-
phisms determined by torus elements). We call (ϕ, Ĝ, ι) and (φ, G̃, κ) equiva-
lent if there exists a g ∈ G̃ such that the diagram

W ′
F

ϕ−−−−→ Ĝ

φ

y xγ
G̃ −−−−→

cg

G̃

is commutative. Here, cg is the inner automorphism determined by g. We
define an L-parameter for G to be an equivalence class of triples (ϕ, Ĝ, ι).
Often we will abuse language and say “ϕ is an L-parameter” for G. These
definitions may seem slightly pedantic, but they are important in situations
where unfamiliar versions of a dual group arise naturally. See the work [BR],
which also recognizes the importance of specifying the isomorphism ι in the
definition of the dual group.

Given an L-parameter ϕ = (ρ,N) for GSp(4), we define the component
group of ϕ as

C(ϕ) = Cent(ϕ)/Cent(ϕ)0 C×,

where Cent(ϕ) denotes the centralizer of the image of ϕ in GSp(4,C), Cent(ϕ)0

denotes its identity component, and C× stands for the center of GSp(4,C).
Note that Cent(ϕ) consists of all g ∈ GSp(4,C) that centralize the image of
ρ, and for which Ad(g)N = N .

Langlands has conjectured that there exists a partition of the set of ir-
reducible, admissible representations of G(F ) into finite sets, and a bijection
between the collection of these finite sets and the set of L-parameters of G.
This bijection, which is called the local Langlands correspondence forG, should
satisfy certain desiderata; see [Bo2]. The local Langlands correspondence for
GL(n) is known; see [HT] and [H]. For later use we point out that in the lit-
erature a standard representative for each L-parameter for GL(n) is chosen,
namely, Ĝ = GL(n,C) and ι is the obvious choice. If the local Langlands cor-
respondence exists for a group G, we let Π(ϕ) be the finite set of irreducible,
admissible representations of G corresponding to the L-parameter ϕ. These
sets are called L-packets.
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Two Principles

Below we assign to each non-supercuspidal, irreducible, admissible represen-
tation of GSp(4, F ) an L-parameter. To do so, we use two principles, which
are desiderata of the local Langlands correspondence.

The first principle concerns non-discrete series representations. One of the
desiderata of the local Langlands correspondence is that Π(ϕ) consists of es-
sentially square-integrable representations if and only if the image of ϕ is not
contained in any proper Levi subgroup of Ĝ. Such L-parameters are called dis-
crete series parameters. The desiderata of the local Langlands conjecture in-
clude a procedure for assigning L-packets to non-discrete series L-parameters,
if the local Langlands correspondence is known for the proper Levi subgroups
of G. The idea of the procedure is as follows.

• Fix a representative (ϕ, Ĝ, ι) for a given non-discrete series L-parameter
of G.

• Determine the unique minimal standard Levi subgroup M̂ that contains a
conjugate of the image of ϕ. By replacing our representative by an equiv-
alent one, we may assume that the image of ϕ is contained in M̂ .

• As explained earlier, M̂ is the dual group of a standard Levi subgroupM of
G; the involved isomorphism of root data is inherited from our fixed choice
of ι. In this way we may consider ϕ as a representative for an L-parameter
of M .

• Since the local Langlands correspondence for M is assumed to be known,
the parameter ϕ determines an L-packet ΠM (ϕ) of representations of
M(F ). These representations are essentially square-integrable, since M̂
was minimal.

• Let M ′ be the maximal standard Levi subgroup of G containing M with
the property that parabolically inducing the representations in ΠM (ϕ)
from M to M ′ produces essentially tempered representations. Let {τi} be
the irreducible constituents of these induced representations.

• For each τi there is a Langlands quotient L(τi), which is an irreducible,
admissible representation of G. By definition, the L-packet Π(ϕ) is the set
consisting of all these L(τi).

• This procedure is independent of the choice of representative for the given
L-parameter.

This procedure may be applied to GSp(4), since the local Langlands corre-
spondences for the proper Levi subgroups are known. It turns out that every
non–square-integrable, irreducible, admissible, representation of GSp(4, F ) is
an element of exactly one packet constructed according to this procedure.
Further below we will present the results of this procedure for GSp(4). Since
we are taking a representation-theoretic viewpoint, we will in fact present
the results by specifying for each non–square-integrable representation its L-
parameter. We will not go through the details of this procedure for all param-
eters; instead we will consider one illustrative example.
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Let µ be an essentially discrete series parameter for GL(2); we use the
standard choice of dual group for GL(2). Consider the GSp(4) L-parameter ϕ
given by

W ′
F 3 w 7−→

[
det(µ(w))µ(w)′

µ(w)

]
∈ GSp(4,C). (2.23)

Here, we use the fixed choice of dual group from Sect. 2.3. The image of ϕ is
contained in the Levi MQ̂ and cannot be conjugated into the torus T̂ . Hence
ϕ defines an essentially discrete series L-parameter for MQ; the dual group
of MQ is inherited from that of GSp(4) as explained in Sect. 2.3. We need to
apply the local Langlands correspondence for MQ; to do so, we identify MQ

with GL(2)×GL(1) as in (2.19), andMQ̂ with GL(2,C)×GL(1,C) as in (2.18).
Via this identification, we can regard ϕ as an L-parameter for GL(2)×GL(1).
Note, however, that the dual group of GL(2) × GL(1) with the isomorphism
inherited from ι is not the standard form of the dual group for GL(2)×GL(1).
Working through the definitions, we obtain an L-parameter equivalent to our
GL(2) × GL(1) L-parameter ϕ, but with the standard choice of dual group,
by composing ϕ with the automorphism (2.17) of GL(2,C)×GL(1,C). This
composition is given by

W ′
F 3 w 7−→ (µ(w), 1) ∈ GL(2,C)×GL(1,C). (2.24)

Remembering the identification MQ
∼= GL(2) × GL(1), the corresponding

singleton L-packet of MQ consists of the representationt g
t−1 det(g)

 7−→ π(g), (2.25)

where π is the representation of GL(2, F ) assigned to µ by the local Lang-
lands correspondence for GL(2). If we parabolically induce the representation
(2.25) to GSp(4, F ), we obtain a tempered representation 1F× oπ; hence, the
intermediate group M ′ mentioned in the outline above is in this case given by
the full group GSp(4). To complete the procedure, we need to decompose the
induced representation into irreducibles. By [ST], we obtain two irreducible
constituents. If π is a twist of StGL(2), then we obtain the two representations
VIa and VIb. If π is supercuspidal, we obtain VIIIa and VIIIb. In each case
we obtain a two-element L-packet attached to the parameter (2.23). It turns
out that these are the only non-discrete series L-packets that contain more
than one element.

The second principle we will use to assign parameters to representations
asserts that the supercuspidal support of a representation determines the
semisimple part of its L-parameter. Suppose that a standard parabolic sub-
group of GSp(4, F ) and an irreducible, admissible, supercuspidal represen-
tation of its Levi subgroup are given; consider the associated parabolically
induced representation of GSp(4, F ). Then, according to the principle, the
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L-parameters of the irreducible subquotients of this induced representation
should all have equivalent semisimple part. To implement this procedure one
determines one of the irreducible constituents of the full induced representa-
tion whose L-parameter is determined by the first principle; this gives ρ, the
common semisimple part of the parameters of the irreducible constituents.
Next one uses the remark from the beginning of this section to find the pos-
sible representations (ρ′, N ′) of W ′

F such that ρ′ = ρ; in the discussion one
has to replace gl(n,C) by gsp(4,C). Now consider on the one hand the set
of irreducible constituents π not covered by the first principle, and on the
other hand the set of (ρ,N) that are not discrete series parameters. As it
happens, in our GSp(4) case, either both sets are empty or both sets have
one element; in the latter situation, the second principle implies that the
L-parameter of π is (ρ,N). As an example, we consider the irreducible con-
stituents of ν2 × ν o ν−1/2σ; one of the constituents is σStGSp(4) (type IVa).
The common semisimple part is

ρ(w) =


(ν3/2σ)(w)

(ν1/2σ)(w)
(ν−1/2σ)(w)

(ν−3/2σ)(w)

 .
One determines that V nil

ρ is spanned by
0 1

0
0 −1

0

 and


0

0 1
0

0

 .
The centralizer C(ρ) consists of all diagonal matrices in GSp(4,C). Therefore,
we get four orbits represented by

0,


0 1

0
0 −1

0

 ,


0
0 1

0
0

 ,


0 1
0 1

0 −1
0

 .
Carrying out the first principle shows that the first three representatives cor-
respond to the non-discrete series representations of type IVd, IVb, IVc, re-
spectively. Therefore, the last representative N , which defines a discrete series
parameter (ρ,N), corresponds to the remaining irreducible constituent, which
is σStGSp(4).

The List of Representations and their L-parameters

To present our list of non-supercuspidal representations and their L-para-
meters, we need a few additional definitions and observations. An irreducible
principal series representation χ1×χ2 of GL(2, F ) corresponds to (µ,N) with
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µ(w) =
[
χ1(w)

χ2(w)

]
, N = 0.

A twist of the trivial representation χ1GL(2) corresponds to (µ,N) with

µ(w) =
[
χ(w)ν(w)1/2

χ(w)ν(w)−1/2

]
, N = 0.

The twisted Steinberg representation χStGL(2) has the same µ butN =
[

0 1
0 0

]
.

It is common to denote by sp(2) the representation (µ,N) with

µ(w) =
[
ν(w)

1

]
, N =

[
0 1
0 0

]
. (2.26)

Using this notation, the L-parameter of StGL(2) is ν−1/2sp(2). We will also
require the four-dimensional parameter sp(4) given by

ρ(w) =


ν(w)3

ν(w)2

ν(w)
1

 , N =


0 1

0 1
0 −1

0

 . (2.27)

Note that the image of this parameter is contained in GSp(4,C). The repre-
sentations sp(2) and sp(4) are not irreducible, but indecomposable, i.e., they
cannot be written as a direct sum of proper subrepresentations.

Having made these definitions, we now present the list of L-parameters
associated to non-supercuspidal representations of GSp(4, F ). The component
groups of all parameters are trivial unless stated otherwise.

Group I

To an irreducible representation of the form χ1 × χ2 o σ we attach the L-
parameter (ρ,N) with N = 0 and ρ given by

ρ : WF −→ GSp(4,C), (2.28)

w 7−→


(χ1χ2σ)(w)

(χ1σ)(w)
(χ2σ)(w)

σ(w)

 .
As mentioned above, χ1, χ2, σ stand both for characters of F× and the corre-
sponding characters of WF .
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Group II

Let χ and σ be characters of F× such that χ2 6= ν±1 and χ 6= ν±3/2. Then
ν1/2χ× ν−1/2χo σ has two irreducible constituents, χStGL(2) o σ (type IIa)
and χ1GL(2) o σ (type IIb). The L-parameters attached to each of these two
irreducible representations will have the same semisimple part

ρ : WF −→ GSp(4,C), (2.29)

w 7−→


(χ2σ)(w)

(ν1/2χσ)(w)
(ν−1/2χσ)(w)

σ(w)

 .
To χ1GL(2)oσ we attach the parameter (ρ,N) withN = 0, and to χStGL(2)oσ
we attach the parameter (ρ,N1) with

N1 =


0

0 1
0

0

 . (2.30)

Group III

Let χ and σ be characters of F× such that χ 6= 1 and χ 6= ν±2. Then
the induced representation χ × ν o ν−1/2σ has two irreducible constituents
χ o σStGSp(2) (type IIIa) and χ o σ1GSp(2) (type IIIb). The L-parameters
attached to each of these two irreducible representations will have the same
semisimple part

ρ : WF −→ GSp(4,C), (2.31)

w 7−→


(ν1/2χσ)(w)

(ν−1/2χσ)(w)
(ν1/2σ)(w)

(ν−1/2σ)(w)

 .
To χoσ1GSp(2) we attach (ρ,N) with N = 0, and to χoσStGSp(2) we attach
the parameter (ρ,N4), where

N4 =


0 1

0
0 −1

0

 . (2.32)



54 2 Representation Theory

Group IV

For any character σ of F× the induced representation ν2 × ν o ν−3/2σ de-
composes into the four irreducible constituents of type IV. The L-parameters
attached to each of these four representations will have the same semisimple
part

ρ : WF −→ GSp(4,C), (2.33)

w 7−→


(ν3/2σ)(w)

(ν1/2σ)(w)
(ν−1/2σ)(w)

(ν−3/2σ)(w)

 .
The Langlands quotient (type IVd) is a twist of the trivial representation
σ1GSp(4), and to it we attach the parameter (ρ,N) with N = 0. To the IVc
type representation L(ν3/2StGL(2), ν

−3/2σ) we attach (ρ,N1) with N1 as in
(2.30). To the IVb type representation L(ν2, ν−1σStGSp(2)) we attach (ρ,N4)
with N4 as in (2.32). Finally, to σStGSp(4) (type IVa) we attach (ρ,N5) with

N5 =


0 1

0 1
0 −1

0

 . (2.34)

Note that this is σν−3/2sp(4) with sp(4) as defined in (2.27).

Group V

Let ξ be a non-trivial quadratic character of F×, and let σ be any character of
F×. Then νξ × ξ o ν−1/2σ decomposes into the four irreducible group V rep-
resentations. The L-parameters attached to each of these four representations
have the same semisimple part

ρ : WF −→ GSp(4,C), (2.35)

w 7−→


(ν1/2σ)(w)

(ν1/2ξσ)(w)
(ν−1/2ξσ)(w)

(ν−1/2σ)(w)

 .
To the Langlands quotient L(νξ, ξoν−1/2σ) (type Vd) we attach (ρ,N) with
N = 0. Note that this representation is invariant under twisting with ξ (see
(3.13) further below), and that the same is true for the corresponding parame-
ter. To the Vc type representation L(ν1/2ξStGL(2), ξν

−1/2σ) we attach (ρ,N2)
with
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N2 =


0 1

0
0

0

 . (2.36)

To the Vb type representation L(ν1/2ξStGL(2), ν
−1/2σ) we attach (ρ,N1) with

N1 as in (2.30). Note that Vb is the ξ-twist of Vc, and the corresponding
parameters are also ξ-twists of each other. Finally, to the essentially square-
integrable Va type representation δ([ξ, νξ], ν−1/2σ) we attach (ρ,N3) with

N3 =


0 1

0 1
0

0

 . (2.37)

If we write

[
a1 b1
c1 d1

]
×

[
a2 b2
c2 d2

]
for


a1 b1
a2 b2
c2 d2

c1 d1

 , (2.38)

then this parameter can be written as σν−1/2sp(2)× ξσν−1/2sp(2). This pa-
rameter cannot be conjugated (by an element of GSp(4,C)) into a Levi sub-
group of GSp(4,C). The component group C(ρ,N3) has two elements, repre-
sented by 

1
1

1
1

 and


1
−1
−1

1

 .
Group VI

Let σ be a character of F× and consider the induced representation ν×1F× o
ν−1/2σ. Its irreducible constituents are the four representations of type VI.
The parameters (ρ,N) we attach to these representations will all have the
same semisimple part

ρ : WF −→ GSp(4,C), (2.39)

w 7−→


(ν1/2σ)(w)

(ν1/2σ)(w)
(ν−1/2σ)(w)

(ν−1/2σ)(w)

 .
To the Langlands quotient L(ν, 1F×oν−1/2σ) (type VId) we attach the param-
eter (ρ,N) with N = 0. To the VIc type representation L(ν1/2StGL(2), ν

−1/2σ)
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we attach the parameter (ρ,N1). To both of the essentially tempered represen-
tations τ(S, ν−1/2σ) and τ(T, ν−1/2σ) we attach the parameter (ρ,N3) with

N3 as in (2.37). Let A = 1√
2

[
1 i
1 −i

]
and g =

[
A
A′

]
∈ Sp(4,C). A computa-

tion shows that

g


0 1

0 1
0

0

 g−1 =


0 1

0 1
0

0

 .
After a further conjugation with the Weyl group element s2, we see that
(ρ,N3) is equivalent to the parameter (ρ′, N4), where N4 is defined in (2.32),
and

ρ′(w) =


(ν1/2σ)(w)

(ν−1/2σ)(w)
(ν1/2σ)(w)

(ν−1/2σ)(w)

 .
In particular, the image of (ρ,N3) can be conjugated into the Levi component
of the Siegel parabolic subgroup. Moreover, the component group C(ρ,N) has
two elements, represented by

1
1

1
1

 and


1

1
1

1

 .
Group VII

Let χ be a character of F× and π a supercuspidal representation of GL(2, F ).
Assume that the induced representation χo π is irreducible, so that we get a
type VII representation. We attach to χo π the L-parameter

W ′
F 3 w 7−→

[
χ(w) det(µ(w))µ(w)′

µ(w)

]
∈ GSp(4,C), (2.40)

where µ is the parameter of π.

Group VIII

If π is a supercuspidal representation of GL(2, F ), then the induced repre-
sentation 1F× o π splits into a direct sum τ(S, π) ⊕ τ(T, π). These are the
representations of type VIIIa and VIIIb. To both of them we associate the
L-parameter (ρ,N) with

ρ : w 7−→
[

det(µ(w))µ(w)′

µ(w)

]
∈ GSp(4,C), (2.41)
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where µ : WF → GL(2,C) is the parameter of π, and N = 0. The component
group C(ρ,N) has two elements, represented by

1
1

1
1

 and


−1

1
−1

1

 .
Group IX

Now let π be a supercuspidal representation of GL(2, F ) with L-parameter µ :
WF → GL(2,C), and let ξ be a non-trivial quadratic character of F× such that
ξπ = π. Then νξoν−1/2π splits into the two components δ(νξ, ν−1/2π) (type
IXa) and L(νξ, ν−1/2π) (type IXb). To the Langlands quotient L(νξ, ν−1/2π)
we attach the L-parameter with semisimple part

ρ : WF −→ GSp(4,C), (2.42)

w 7−→
[
ξ(w)ν1/2(w) det(µ(w))µ′(w)

ν−1/2(w)µ(w)

]
,

and nilpotent part N = 0. To define the L-parameter for δ(νξ, ν−1/2π), we
require the following lemma.

Lemma 2.4.1. Let π be a supercuspidal representation of GL(2, F ) with L-
parameter µ : WF → GL(2,C). Assume ξ is a non-trivial character of F×

such that ξπ = π. Then there exists a symmetric matrix S ∈ GL(2,C) such
that

tµ(w)Sµ(w) = ξ(w) det(µ(w))S

for all w ∈WF .

Proof. For each 2× 2 matrix A, we have

det(A)
[

1
−1

]
= tA

[
1

−1

]
A.

In particular,

det(µ(w))
[

1
−1

]
= tµ(w)

[
1

−1

]
µ(w) for all w ∈WF . (2.43)

Since ξπ = π, the parameter ξµ is isomorphic to µ. This implies that there
exists an element C ∈ GL(2,C) such that

ξ(w)µ(w)C = Cµ(w) for all w ∈WF . (2.44)

Combining (2.43) and (2.44), we get
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tµ(w)Sµ(w) = ξ(w) det(µ(w))S with S =
[

1
−1

]
C.

Taking transposes, we get the same relation with tS instead of S. Now it is
easy to see that, for any S ∈ GL(2,C), one of the matrices S + tS or S − tS
is invertible. Assume S − tS is invertible. We have

tµ(w)(S − tS)µ(w) = ξ(w) det(µ(w))(S − tS),

and then also

tµ(w)
[

1
−1

]
µ(w) = ξ(w) det(µ(w))

[
1

−1

]
for all w ∈ WF . Since ξ is non-trivial, this contradicts (2.43). Hence the
symmetric matrix S + tS must be invertible. Since

tµ(w)(S + tS)µ(w) = ξ(w) det(µ(w))(S + tS),

for all w ∈WF , the assertion follows. ut

Let S be the symmetric matrix from Lemma 2.4.1, and let B =
[

1
1

]
S. Then

N :=
[

0 B
0 0

]
(2.45)

lies in the Lie algebra of GSp(4,C). We have

tµ(w)
[

1
1

]
Bµ(w) = ξ(w) det(µ(w))

[
1

1

]
B,

and hence

ξ(w) det(µ(w))µ(w)′Bµ(w)−1 = B for all w ∈WF .

This implies that

ρ(w)Nρ(w)−1 = ν(w)N for all w ∈WF ,

where ρ is as in (2.42). Thus we get a representation (ρ,N) of the Weil–Deligne
group, and this is the L-parameter we attach to δ(νξ, ν−1/2π).

Group X

Let π be a supercuspidal representation of GL(2, F ) and σ a character of F×.
We consider the Siegel induced representation πo σ. Assume that ωπ 6= ν±1,
so that π o σ is irreducible and of type X. If µ : WF → GL(2,C) is the
L-parameter of π, then we attach to π o σ the L-parameter

ρ : WF −→ GSp(4,C), (2.46)

w 7−→

σ(w) det(µ(w))
σ(w)µ(w)

σ(w)

 .
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Group XI

Now let π be a supercuspidal representation of GL(2, F ) with ωπ = 1 and σ a
character of F×. The induced representation ν1/2πo ν−1/2σ decomposes into
the XIa type representation δ(ν1/2π, ν−1/2σ) and the XIb type representation
L(ν1/2π, ν−1/2σ). To the Langlands quotient L(ν1/2π, ν−1/2σ) we attach the
L-parameter with semisimple part

ρ : WF −→ GSp(4,C), (2.47)

w 7−→

σ(w)ν1/2(w)
σ(w)µ(w)

σ(w)ν−1/2(w)


and nilpotent part N = 0. To δ(ν1/2π, ν−1/2σ) we attach the parameter with
the same semisimple part (2.47) but nilpotent part N = N2, where N2 is
defined in (2.36). This parameter cannot be conjugated by a symplectic matrix
into a Levi subgroup of GSp(4,C). The component group C(ρ,N2) has two
elements, represented by

1
1

1
1

 and


1
−1
−1

1

 .
Further Properties

This completes the list of L-parameters of the non-supercuspidal representa-
tions of GSp(4, F ). In addition, it is easy to check that the following facts
hold. Let ϕ : W ′

F → GSp(4,C) be the parameter of π.

i) L-parameters are compatible with twisting by characters: If ϕ = (ρ,N),
then χπ has L-parameter (χ⊗ ρ,N).

ii) The multiplier λ(ρ) equals the central character of π under the identifica-
tion of characters of F× and characters of WF .

iii) π is essentially square-integrable if and only if the image of ϕ is not con-
tained in any proper Levi subgroup of GSp(4,C).

iv) Regard ϕ as a representation of the Weil–Deligne group and write it as a
direct sum of indecomposable representations,

ϕ =
t⊕
i=1

ρi ⊗ sp(ni),

where ρi is an irreducible representation of WF . Then π is tempered if
and only if the representations ν(ni−1)/2ρi are bounded.
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Finally, we can describe the L-packets resulting from our assignment of L-
parameters to non-supercuspidal representations of GSp(4, F ). It is one of the
desiderata of the local Langlands correspondence that if ϕ is an L-parameter,
then the number of elements in a packet Π(ϕ) equals the order of the group

C(ϕ) = Cent(ϕ)/Cent(ϕ)0 C×,

where Cent(ϕ) denotes the centralizer of the image of ϕ in GSp(4,C), Cent(ϕ)0

denotes its identity component, and C× stands for the center of GSp(4,C).
Computations show that for the parameters associated to the non-supercuspi-
dal representations of GSp(4, F ) the order of #C(ϕ) equals 1 or 2. This order
is 2 for the parameters associated to the representations of type Va, VIa, VIb,
VIIIa, VIIIb and XIa. In other words, among the non-supercuspidal, irre-
ducible representations of GSp(4, F ) these are the representations contained
in L-packets with more than one element; all the other non-supercuspidal
representations form singleton L-packets. In fact, the representations of type
VIa,b form an L-packet {τ(S, ν−1/2σ), τ(T, ν−1/2σ)}, and the representa-
tions of type VIIIa,b form an L-packet {τ(S, π), τ(T, π)}. The representations
δ([ξ, νξ], ν−1/2σ) of type Va and δ(ν1/2π, ν−1/2σ) of type XIa should each be
members of two-element L-packets whose other members are supercuspidal.

L- and ε-factors of L-parameters

Finally, we recall the definitions of the L- and ε-factors of admissible rep-
resentations of the Weil–Deligne group. Suppose that ϕ = (ρ,N) is such a
representation, acting on the space V . Let Φ ∈ WF be an inverse Frobe-
nius element, and let I = Gal(F̄ /F un) ⊂ WF be the inertia subgroup. Let
VN = ker(N), V I = {v ∈ V : ρ(g)v = v for all g ∈ I} and V IN = V I ∩ VN .
Then the L-factor of ϕ is defined by

L(s, ϕ) = det(1− q−sρ(Φ)
∣∣V IN )−1. (2.48)

The ε-factor of ϕ is defined by

ε(s, ϕ, ψ) = ε(s, ρ, ψ) det(−ρ(Φ)q−s
∣∣V I/V IN ) (2.49)

where the factor ε(s, ρ, ψ) is the one defined in (3.6.4) of [T] (it is denoted by
εL(s, ρ, ψ) there). This is the definition in [T] p. 21. Note that formula (4.1.4)
of [K] should have det(−Φ

∣∣V I/V IN ) replaced by det(−ρ(Φ)q−s
∣∣V I/V IN ). For

general facts on L- and ε-factors see [T] and [Roh]; note that in the notation
of [Roh], our factor ε(s, ϕ, ψ) is ε(ϕ⊗ωs, ψ, dxψ), where ωs is the character of
WF trivial on I and such that ωs(Φ) = q−s, and where dxψ is the measure on
F that is self-dual with respect to ψ, as on page 144 of [Roh]. The conductor
of ϕ is

a(ϕ) = a(ρ) + dim(V I)− dim(V IN ), (2.50)

as on page 139 of [Roh]; here, a(ρ) is the conductor of ρ as in section 10 of
[Roh]. Note that a(ϕ) is a non-negative integer.
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Proposition 2.4.2. Let ϕ be an admissible representation of the Weil–Deligne
group.

i) We have ε(s, ϕ, ψ) = ε(1/2, ϕ, ψ)q−a(ϕ)(s−1/2).
ii) If the image of ϕ is contained in SL(n,C), then ε(s, ϕ, ψ) does not depend

on the particular choice of additive character ψ (recall that we always
assume that ψ has conductor o).

iii) If the image of ϕ is contained in Sp(2n,C), then ε(1/2, ϕ, ψ) ∈ {±1}.

Proof. i) By (iii) of the proposition on page 143 of [Roh] and the definition
(2.49), the factor ε(s, ϕ, ψ) is of the form cq−a(ϕ)(s−1/2) with a constant c.

ii) The independence of ε(s, ϕ, ψ) on the character ψ follows from (i) of
the proposition on page 143 of [Roh].

iii) This follows from (iii) of the lemma on page 144 of [Roh]. ut

Suppose that ϕ is an L-parameter for GSp(4). Then ϕ is an admissible rep-
resentation of the Weil–Deligne group, and L(s, ϕ) and ε(s, ϕ, ψ) are defined.
If the image of ϕ is contained in Sp(4,C), we will often write ε(s, ϕ) instead of
ε(s, ϕ, ψ). If π is a non-supercuspidal, irreducible, admissible representation of
GSp(4, F ), and ϕπ is the L-parameter of π as defined above, then the image
of ϕπ is contained in Sp(4,C) if and only if π has trivial central character.

Proposition 2.4.3. Let π be a non-supercuspidal, irreducible, admissible rep-
resentation of GSp(4, F ), and let ϕπ be the L-parameter of π as defined above.
Then the L-factor L(s, ϕπ) is tabulated in Table A.8. Assume that π has trivial
central character. Then the ε-factor ε(s, ϕπ) is tabulated in Table A.9.

Proof. This proposition follows by using the involved definitions, and we will
omit the case-by-case verification. However, we will make some remarks about
the computation of ε(s, ϕπ) in the case π has trivial central character. First
of all, it is useful to note that

ε(1/2, µ, ψ)ε(1/2, µ∨, ψ) = det(µ)(−1)

for any representation µ of the Weil-Deligne group. Second, we will discuss
two cases that perhaps require further comment. For σStGSp(4) (type IVa) we
use the Corollary on page 146 of [Roh]. For δ(νξ, ν−1/2π) (type IXa), we will
do a direct computation of the ε-factor. According to the definition (2.49), we
have to compute ε(s, ρ) and det(−ρ(Φ)q−s

∣∣V I/V IN ). By (2.42),

ρ ∼= ξν1/2 det(µ)µ′ ⊕ ν−1/2µ

∼= ξν1/2µ⊕ ν−1/2µ

= ν1/2 det(µ)−1µ⊕ ν−1/2µ

= ν1/2µ∨ ⊕ ν−1/2µ,

where µ is the parameter of the supercuspidal GL(2) representation π. There-
fore, ε(1/2, ρ) = ξ(−1). As for det(−ρ(Φ)q−s

∣∣V I/V IN ), we will show that this
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factor is 1 by proving that V has no non-zero I-invariant vectors under the
action of ρ. For this it suffices to show that the two-dimensional irreducible
representation µ has no non-zero I-fixed vectors. If the dimension of the space
of I-fixed vectors was one, then µ(Φ) preserves this space since Φ normalizes I;
this is impossible, since µ is irreducible. If the dimension of the space of I-fixed
vectors was two, then µ would factor through WF /I ∼= Z; this is impossible,
since an abelian group cannot have a two-dimensional irreducible represen-
tation. Hence V I = 0. We conclude that ε(1/2, ϕπ) = ε(1/2, ρ) = ξ(−1).
ut

Proposition 2.4.4. Let π be a non-supercuspidal, generic, irreducible, admis-
sible representation of GSp(4, F ). Let ϕπ be the L-parameter of π as defined
above. Then L(s, ϕπ) = L(s, π), where L(s, π) is as defined in Sect. 2.6.

Proof. This follows by comparison of Table A.8 with the results of [Tak]; see
the proof of Theorem 4.2.1 below. ut

2.5 P3-Theory

In this section we relate admissible representations of GSp(4, F ) with trivial
central character to smooth representations of the group P3, which is the
subgroup

P3 =

∗ ∗ ∗∗ ∗ ∗
1


of GL(3, F ). The representation theory of the analogous subgroup Pn of
GL(n, F ) plays an important role in the representation theory of GL(n, F ),
and there is an extensive theory of Pn smooth representations; see [BZ]. Every
irreducible, admissible representation of GL(n, F ) defines a smooth represen-
tation of Pn of finite length, and this connection can be exploited to prove,
for example, the existence of Kirillov models for generic, irreducible, admis-
sible representations of GL(n, F ). As it happens, irreducible, admissible rep-
resentations V of GSp(4, F ) with trivial central character also define smooth
representations of P3 of finite length. In the GSp(4, F ) case the P3 representa-
tion is not obtained by restriction. Instead, the associated P3 representation
is the quotient VZJ . It is this need to take a quotient that accounts for the
non-existence of naive Kirillov type models for generic, irreducible, admissible
representations of GSp(4, F ) with trivial central character. Nevertheless, the
P3 representation VZJ is a useful tool for proving basic results about zeta
integrals and studying paramodular vectors.

We begin with some definitions and fundamental facts. Recall from Sect.
2.1 that Z denotes the center of GSp(4, F ), and ZJ denotes the center of the
Jacobi group. We have Z(F ) ∼= F× and ZJ(F ) ∼= F . For simplicity, we shall
write Z for Z(F ) and ZJ for ZJ(F ), and similarly for other subgroups of
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GSp(4, F ). The following lemma is the key observation behind the connection
to P3 representations.

Lemma 2.5.1. The group ZJ is a normal subgroup of Q. Moreover, there is
a homomorphism

i : Q→ P3

defined by

i(


ad− bc

a b
c d

1




1 −y x z
1 x

1 y
1



u
u
u
u

) =

a bc d
1

1 x
1 y

1

 .
The kernel of i is ZJZ, so that we get an isomorphism Q/ZJZ ∼= P3.

Proof. The existence of an isomorphism is noted in Lemma 6.2 of [PS]. A
direct computation verifies that i is a homomorphism. Evidently, i is surjective
with kernel ZJZ. ut

Let (π, V ) be a smooth representation of GSp(4, F ) such that the center of
GSp(4, F ) acts trivially. Let V (ZJ) be the C vector subspace of V generated
by the vectors v − π(z)v for z ∈ ZJ and v ∈ V . Then Q acts on V (ZJ), so
that Q acts on VZJ = V/V (ZJ). Since Z and ZJ act trivially on VZJ , we
obtain an action of Q/ZJZ on VZJ . Using the isomorphism induced by i from
Lemma 2.5.1, we obtain an action of P3 on VZJ . Let p : V → VZJ be the
projection map. If q ∈ Q and v ∈ V , then

p(π(q)v) = i(q)p(v). (2.51)

In the remainder of this section we will study VZJ as a representation of P3.
We need to complete two tasks before we can state the main result about VZJ .

First, we need to summarize some results about smooth representations
of P3. For details and proofs, the reader should consult [BZ]. Induction from
three subgroups is important in the representation theory of P3. These three
subgroups correspond to GL(0, F ) = 1, GL(1, F ) = F× and GL(2, F ), and
the representations to be induced arise from representations of GL(0, F ) = 1,
GL(1, F ) = F× and GL(2, F ). The first subgroup is1 ∗ ∗

1 ∗
1

 .
Fix a smooth representation of GL(0, F ) = 1, i.e., a vector space Y , define a
unitary character Θ of this group by

Θ(

1 u12 ∗
1 u23

1

) = ψ(u12 + u23)
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and let Y ⊗ Θ be the smooth representation of this group defined by u · y =
Θ(u)y for u in the group and y ∈ Y . We consider the smooth representation

τP3
GL(0)(Y ) = c-IndP3»

1 ∗ ∗
1 ∗

1

–(Y ⊗Θ).

Evidently,

τP3
GL(0)(Y ) ∼= (dimY ) · c-IndP3»

1 ∗ ∗
1 ∗

1

–(C⊗Θ) = (dimY ) · c-IndP3»
1 ∗ ∗

1 ∗
1

–Θ.

The representation
τP3
GL(0)(1) = c-IndP3»

1 ∗ ∗
1 ∗

1

–(Θ)

is irreducible. It is called τ0
P3

in [BZ]. The next subgroup corresponds to
GL(1, F ) = F×. It is ∗ ∗ ∗1 ∗

1

 .
If (χ,X) is a smooth representation of GL(1, F ) = F×, then we define a
smooth representation χ ⊗ Θ of the above group by letting χ ⊗ Θ have the
same space X as χ and setting

(χ⊗Θ)(

a ∗ ∗1 y
1

) = ψ(y)χ(a).

We consider the smooth representation

τP3
GL(1)(χ) = c-IndP3» ∗ ∗ ∗

1 ∗
1

–(χ⊗Θ)

of P3. If χ is irreducible, i.e., χ is a character, then this representation is
irreducible. Finally, there is a subgroup corresponding to GL(2, F ). This is
just P3. If ρ is a smooth representation of GL(2, F ), then we define a smooth
representation

τP3
GL(2)(ρ)

of P3 by letting τP3
GL(2)(ρ) have the same space as ρ and action defined by

τP3
GL(2)(ρ)(

a b ∗c d ∗
1

) = ρ(
[
a b
c d

]
).

If ρ is irreducible, then τP3
GL(2)(ρ) is irreducible. Every irreducible, smooth

representation η of P3 is isomorphic to
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τP3
GL(0)(1), τP3

GL(1)(χ) or τP3
GL(2)(ρ)

for some irreducible, admissible representation χ of GL(1, F ) = F×, or
some irreducible, admissible representation ρ of GL(2, F ). Moreover, the
group GL(k, F ), k = 0, 1, 2 and the irreducible, admissible representation
of GL(k, F ) are uniquely determined by η.

Our second task before stating the main theorem of this section is to
prove a lemma that will imply VZJ has finite length as a representation of P3

when V is an irreducible, admissible representation of P3 with trivial central
character. In the proof of the following lemma MB , MP and MQ are the Levi
subgroups of B, P and Q, respectively. Similarly, U , NP and NQ are the
unipotent radicals of B, P and Q, respectively.

Lemma 2.5.2. Let (π, V ) be an irreducible and admissible representation of
GSp(4, F ) with trivial central character. Then

dim HomU (V, ψc1,c2) <∞

for all c1, c2 ∈ F .

Proof. Suppose c1 = c2 = 0. Then

dim HomU (V, ψc1,c2) = dimVU .

The Jacquet module VU is a finitely generated, admissible representation of
MB
∼= F××F××F× by Theorem 3.3.1 of [Ca1]. By 4.1 of [BZ], VU is of finite

length as a representation of MB . This implies that VU is finite dimensional.
Suppose c1 6= 0 and c2 = 0. Then

HomU (V, ψc1,c2) = Hom" 1 ∗
1

1 ∗
1

#(VNP
, ψc1,0).

By the same reasoning as in the previous paragraph, VNP
is a representation

of finite length of the group MP
∼= GL(2, F )×F×. To prove the claim in this

case it thus suffices to prove that

dim Hom[ 1 ∗1 ]×1
(τ ⊗ χ, ψc1)

is finite for τ an irreducible, admissible representation of GL(2, F ) and χ a
character of F×. This follows from 5.21 of [BZ].

Suppose c1 = 0 and c2 6= 0. Then

HomU (V, ψc1,c2) = Hom" 1
1 ∗

1
1

#(VNQ
, ψ0,c2).

Again, VNQ
is a representation of finite length of the group MQ

∼= GL(2, F )×
F×, and the same argument as in the previous paragraph applies.

Finally, suppose c1 6= 0 and c2 6= 0. Then dim HomU (V, ψc1,c2) ≤ 1 by the
uniqueness of Whittaker models. ut
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Theorem 2.5.3. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) with trivial central character. The quotient VZJ = V/V (ZJ) is
a smooth representation of Q/ZJZ, and hence via Lemma 2.5.1 defines a
smooth representation of P3. As a representation of P3, VZJ has finite length.
Hence, VZJ has a finite filtration by P3 subspaces such that the successive
quotients are irreducible and of the form τP3

GL(0)(1), τP3
GL(1)(χ) or τP3

GL(2)(ρ) for
some character χ of F×, or some irreducible, admissible representation ρ of
GL(2, F ). Moreover, the following statements hold:

i) There exists a chain of P3 subspaces

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ

such that:

V2
∼= τP3

GL(0)(VU,ψ−1,1) ∼= dim HomU (V, ψ−1,1) · τP3
GL(0)(1),

V1/V2
∼= τP3

GL(1)(VU,ψ−1,0),

V0/V1
∼= τP3

GL(2)(VNQ
).

Here, the complex vector space VU,ψ−1,1 defines a smooth representation of
GL(0, F ), the vector space VU,ψ−1,0 admits a smooth action of GL(1, F ) ∼=
F× induced by the operators

π(


a
a

1
1

), a ∈ F×,

and VNQ
admits a smooth action of GL(2, F ) induced by the operators

π(

det g
g

1

), g ∈ GL(2, F ).

ii) The representation π is generic if and only if V2 6= 0, and if π is generic,
then V2

∼= τP3
GL(0)(1).

iii) We have V2 = VZJ if and only if π is supercuspidal. If π is supercuspidal
and generic, then VZJ = V2

∼= τP3
GL(0)(1) is non-zero and irreducible. If π

is supercuspidal and non-generic, then VZJ = V2 = 0.

Proof. First we prove the initial claims of the theorem. Let

U3 =

1 ∗ ∗
1 ∗

1

 .
By 5.23 of [BZ], to prove that VZJ has finite length as a P3 representation it
suffices to prove that dim(VZJ )U3,θ is finite for all characters θ of U3. This is
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equivalent to dimVU,ψc1,c2
being finite for all c1, c2 ∈ F , and thus follows from

Lemma 2.5.2. The remaining initial claims follow from the discussion about
irreducible, smooth P3 representations preceding the theorem.

i) We set Vi = (VZJ )i for i = 0, 1, 2 where (VZJ )i is as defined as in 5.15 of
[BZ]. Then the assertions follow from 5.15 of [BZ] and the involved definitions.
Note that there is a misprint in 5.15 of [BZ]; the second sentence should read
“We set πi = (Φ+)i(Φ−)i(π)”.

ii) This follows from V2
∼= dim HomU (V, ψ−1,1) · τP3

GL(0)(1).
iii) To prove that V2 = VZJ if and only if π is supercuspidal we will use

the equivalence (1) ⇐⇒ (2) of the proposition in 5.15 of [BZ]. This equiv-
alence asserts that V2 = VZJ if and only if (VZJ )Uβ

= 0 for each non-trivial
horospherical subgroup Uβ of P3. The non-trivial horospherical subgroups of
P3 are

U3 = U(1,1,1) =

1 ∗ ∗
1 ∗

1

 , U(1,2) =

1 ∗ ∗
1

1

 , U(2,1) =

1 ∗
1 ∗

1

 ,
and there are isomorphisms of complex vector spaces

VU ∼= (VZJ )U3 , VNP
∼= (VZJ )U(1,2) , VNQ

∼= (VZJ )U(2,1) .

It follows that (VZJ )Uβ
= 0 for each non-trivial horospherical subgroup Uβ of

P3 if and only if π is supercuspidal. The remaining claims follow from ii). ut

In the tables in Appendix A.4 we have listed the semisimplifications of the
P3 modules V0/V1 and V1/V2 for each irreducible, admissible representation
of GSp(4, F ) with trivial central character.

In the remainder of this section we investigate certain linear functionals
on the three types of irreducible representations of P3. Such linear functionals
arise in the consideration of zeta integrals, and these results will be used to
prove the functional equation for zeta integrals. Lemma 2.5.5 will also be used
to investigate the poles of L-functions of generic representations in Sect. 4.2.

Lemma 2.5.4. Let χ be a character of F×. The space of linear functionals

λ : τP3
GL(0)(1)→ C

such that

λ(

1
1 y

1

 f) = ψ(y)λ(f), λ(

1
x 1

1

 f) = λ(f)

and

λ(

a 1
1

 f) = χ(a)λ(f)
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for x, y ∈ F , a ∈ F× and f ∈ τP3
GL(0)(1) is one-dimensional. Moreover, if λ is

such a linear functional, then there exists c ∈ F such that

λ(f) = c

∫
F

∫
F×

f(

ax 1
1

)χ(a)−1|a|−1 d×a dx

for f ∈ τP3
GL(0)(1).

Proof. We begin by computing the twisted Jacquet module

τP3
GL(0)(1)»

1
1 ∗

1

–
,ψ
.

As usual, let S(F××F ) be the space of Schwartz functions on F××F . Define

T : τP3
GL(0)(1)→ S(F× × F )

by

T (f)(a, x) = f(

ax 1
1

).

First of all, we claim that T is well-defined. To see this, let f ∈ τP3
GL(0)(1).

By definition, f is left invariant under a compact open subgroup of P3 and is
compactly supported modulo the subgroup1 ∗ ∗

1 ∗
1


of P3. This implies that there exist a positive integer n and gi ∈ GL(2, F ),
1 ≤ i ≤ t, such that f is left invariant under[

Γ (pn)
1

]
and the support of f is contained in a disjoint union

t⊔
i=1

1 ∗ ∗
1 ∗

1

[
gi

1

] [
Γ (pn)

1

]
. (2.52)

Here, Γ (pn) is the subgroup of k in GL(2, o) such that k ≡ 1 mod pn. Using
this, it is not hard to see that the locally constant function defined by

(a, x) 7→ f(

ax 1
1

)
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has compact support, so that T is well-defined.
Second, we claim that the kernel of T is the subspace consisting of all C

linear combinations of the elements

ψ(y)h−

1
1 y

1

h, h ∈ τP3
GL(0)(1), y ∈ F. (2.53)

A computation verifies that these elements are in the kernel of T . Conversely,
suppose that f is in the kernel of T . Let the support of f be contained in the
disjoint union (2.52). For 1 ≤ i ≤ t, let fi be the restriction of f to the i-th
double coset. Then fi ∈ τP3

GL(0)(1) for 1 ≤ i ≤ t, and f = f1 + · · · + ft. Also,
each fi is in the kernel of T . To prove that f is in the span of the elements
(2.53), it suffices to prove that each fi is in this span. Fix 1 ≤ i ≤ t. If fi = 0,
then there is nothing to prove. Assume fi 6= 0. Then fi is non-zero on every
point of the i-th coset. Let k ∈ Γ (pn), and write

gik =
[
a(k) b(k)
c(k) d(k)

]
.

We claim that d(k) /∈ 1 + pn for all k ∈ Γ (pn). To see this, suppose there
exists k ∈ Γ (pn) such that d(k) ∈ 1 + pn. Then d(k) 6= 0. Also,

fi(
[
gi

1

]
) = fi(

[
gi

1

] [
k

1

]
)

= fi(

a(k) b(k)c(k) d(k)
1

)

= ψ(b(k)d(k)−1)fi(

1 −b(k)d(k)−1

1
1

a(k) b(k)c(k) d(k)
1

)

= ψ(b(k)d(k)−1)fi(

 a′

c(k) d(k)
1

)

for some a′ ∈ F×. Hence,

fi(
[
gi

1

]
) = ψ(b(k)d(k)−1)fi(

 a′

c(k) d(k)
1

)

= ψ(b(k)d(k)−1)fi(

 a′

c(k) 1
1

1
d(k)

1

)

= ψ(b(k)d(k)−1)fi(

 a′

c(k) 1
1

)
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= 0.

The last equality follows from T (fi) = 0. This is a contradiction, since fi does
not vanish at each point of the i-th double coset. Since d(k) − 1 /∈ pn for all
k ∈ Γ (pn), there exists a positive integer m such that∫

p−m

ψ((d(k)− 1)y) dy = 0

for all k ∈ Γ (pn). Let

f ′ = (
∫

p−m

dy)−1 ·
∫

p−m

ψ(y)−1(ψ(y)fi −

1
1 y

1

 fi) dy.
Then f ′ ∈ τP3

GL(0)(1) and f ′ is in the span of the elements (2.53). To verify
that f ′ = fi it suffices to check that

f ′(

a(k) b(k)c(k) d(k)
1

) = fi(

a(k) b(k)c(k) d(k)
1

)

for k ∈ Γ (pn) and f ′(p) = 0 for p not in the i-th double coset. Let p ∈ P3 and
write

p =

∗ ∗ ∗∗ d ∗
1

 .
Then

f ′(p) = fi(p)− (
∫

p−m

dy)−1 ·
∫

p−m

ψ(y)−1fi(p

1
1 y

1

) dy

= fi(p)− (
∫

p−m

dy)−1(
∫

p−m

ψ((d− 1)y) dy)fi(p).

This implies that if p is not in the i-th double coset, then f ′(p) = 0. Also, we
see that if

p =

a(k) b(k)c(k) d(k)
1

 , k ∈ Γ (pn),

then we also have f ′(p) = fi(p). This proves our claim about the kernel of T .
Next, we prove that T is surjective. Let ϕ ∈ S(F××F ). Choose n so large

that: ϕ(a, x + y) = ϕ(a, x) for a ∈ F×, x ∈ F , y ∈ pn; ϕ(au, x) = ϕ(a, x) for
a ∈ F×, x ∈ F , u ∈ 1 + pn; and if ϕ(a, x) 6= 0 for some a ∈ F× and x ∈ F ,
then $na ∈ o. Define f : P3 → C by
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f(p) =



0 if p /∈

1 ∗ ∗
1 ∗

1

∗∗ 1
1

[
Γ (pn)

1

]
,

ψ(y + z)ϕ(a, x) if p =

1 z ∗
1 y

1

ax 1
1

[
Γ (pn)

1

]
.

Computations show that f is a well defined element of τP3
GL(0)(1). By construc-

tion, T (f) = ϕ, so that T is surjective. Define a group structure on F× × F
via the isomorphism of sets

F× × F ∼−−−−→

F×F 1
1

 , (a, x) 7→ m(a, x) =

ax 1
1


and transport of structure, where the group law on the second group is multi-
plication of matrices. Then, in summary, it follows that T induces an isomor-
phism of F× × F representations

τP3
GL(0)(1)»

1
1 ∗

1

–
,ψ

T−−−−→
∼

S(F× × F ),

where (a, x) acts on the first space by m(a, x) via the P3 action, and (a, x)
acts on the second space by right translation with respect to the just defined
group law.

We can now prove the assertions of the lemma. Let λ be a linear functional
as in the statement of the lemma. By the first transformation property of λ, λ
is trivial on the kernel of T , and thus induces a linear functional on S(F××F ),
which we also call λ. This linear functional satisfies λ((a, x)ϕ) = χ(a)λ(ϕ) for
a ∈ F×, x ∈ F and ϕ ∈ S(F× × F ). Let k be a positive integer such that
χ(1 + pk) = 1. Consider the restriction of λ to the subspace S((1 + pk)× F ).
Then λ((a, x)ϕ) = λ(ϕ) for a ∈ 1 + pk, x ∈ F and ϕ ∈ S((1 + pk) × F ).
Moreover, (1 + pk)× F is a subgroup of F× × F . By the proposition in 1.18
of [BZ] , there exists c ∈ C such that the restriction of λ to S((1 + pk) × F )
is c times the Haar measure on the unimodular group (1 + pk)× F , i.e.,

λ(ϕ) = c

∫
1+pk

∫
F

ϕ(a, x) d×a dx

for ϕ ∈ S((1 + pk) × F ). Let ϕ ∈ S(F× × F ). We can write ϕ = (a1, 0)ϕ1 +
· · ·+(ar, 0)ϕr, where ϕi ∈ S(F××F ) has support in (1+pk)×F and ai ∈ F×
for 1 ≤ i ≤ r. A computation shows that

λ(ϕ) = c χ(a1)
∫

1+pk

∫
F

ϕ1(a, x) d×a dx+ · · ·+ c χ(ar)
∫

1+pk

∫
F

ϕr(a, x)d×a dx
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= c

∫
F×

∫
F

ϕ(a, x)χ(a)−1|a|−1 d×a dx.

This completes the proof. ut

Lemma 2.5.5. Let χ be a character of F×. The space of linear functionals

λ : τP3
GL(1)(χ) = c-IndP3» ∗ ∗ ∗

1 ∗
1

–(χ⊗ ψ)→ C

such that

λ(

1
1 y

1

 f) = ψ(y)λ(f) and λ(

1
x 1

1

 f) = λ(f)

for x, y ∈ F and f ∈ τP3
GL(1)(χ) is one-dimensional, and every such linear

functional is a multiple of the linear functional that sends f to

∫
F

f(

1
x 1

1

) dx.

Moreover, if λ is such a linear functional, then

λ(

a 1
1

 f) = |a|−1χ(a)λ(f)

for a ∈ F× and f ∈ τP3
GL(1)(χ).

Proof. The proof of this lemma is very similar to the proof of Lemma 2.5.4.
The first step is to compute the twisted Jacquet module

τP3
GL(1)(χ)»

1
1 ∗

1

–
,ψ
.

Again, we define a map

T : τP3
GL(1)(χ)→ S(F )

by

T (f)(x) = f(

1
x 1

1

).

Proceeding as in the proof of Lemma 2.5.4, we prove that T induces an iso-
morphism of F spaces
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τP3
GL(1)(χ)»

1
1 ∗

1

–
,ψ

T−−−−→
∼

S(F ),

where F acts by translation on the second space. Let λ be a linear functional
as in the statement of the lemma. By the first transformation property of λ,
λ is trivial on the kernel of T , and thus induces a linear functional of S(F ).
By the second transformation property of λ this linear functional is invariant
under translation by F . By the proposition in 1.18 of [BZ], this induced linear
functional is a multiple of the Haar measure on F , i.e., the linear functional
on S(F ) which sends ϕ ∈ S(F ) to∫

F

ϕ(x) dx.

This proves the first assertion of the lemma. The second assertion of the lemma
follows by a computation. ut

Lemma 2.5.6. Let ρ be an irreducible, admissible representation of GL(2, F ).
If λ : τP3

GL(2)(ρ)→ C is a linear functional such that

λ(

1
1 y

1

 f) = ψ(y)λ(f)

for y ∈ F and f ∈ τP3
GL(2)(ρ), then λ = 0.

Proof. This follows immediately from the definition of τP3
GL(2)(ρ). ut

The following proposition applies the last three lemmas to deduce a result
about the uniqueness of certain linear functionals, called Bessel functionals of
split type, on irreducible admissible representations of GSp(4, F ) with trivial
central character. This result will be used to prove the functional equation for
zeta integrals.

Proposition 2.5.7. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) with trivial central character. Let C(π) be the finite set of characters
α : F× → C× such that τP3

GL(1)(α) is an irreducible subquotient of VZJ . Let
χ : F× → C× be a character such that | · |χ is not contained in C(π). Then
the C vector space of linear functionals L : V → C such that

i) L(π(


1 y

1
1 −y

1

)v) = ψ(c1y)L(v) for y ∈ F and v ∈ V ;

ii) L(π(


1

1
x 1

1

)v) = L(v) for x ∈ F and v ∈ V ;
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iii) L(π(


a
a

1
1

)v) = χ(a)L(v) for a ∈ F× and v ∈ V ;

iv) L(π(


1 z

1
1

1

)v) = L(v) for z ∈ F and v ∈ V

is at most one-dimensional.

Proof. Let L and L′ be non-zero linear functionals as in the statement of the
proposition. We need to prove that there exists c ∈ C such that L′ = cL. By
precomposing L and L′ with

π(


−c−1

1

1
1
−c1

)

we may assume that c1 = −1. By iv), the linear functionals L and L′ induce
linear functionals on VZJ ; we will also denote these linear functionals by L
and L′. Recall the chain of subspaces

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ

from Theorem 2.5.3. By i), ii), iii) and Lemma 2.5.4, there exists c ∈ C such
that L′(v) = cL(v) for v ∈ V2 (if L

∣∣
V2

= 0, then switch the roles of L and L′).
Let J = L′ − cL. We have J(V2) = 0. Suppose that J(V1) 6= 0. Then by i) of
Theorem 2.5.3, there exist P3 subspaces U,U ′ ⊂ V1 such that V2 ⊂ U ⊂ U ′,
J(U) = 0, J(U ′) 6= 0, and U ′/U ∼= τP3

GL(1)(α) for some α ∈ C(π). By i), ii), iii)
and Lemma 2.5.5, we must have χ = | · |−1α; this contradicts | · |χ /∈ C(π).
Therefore, J(V1) = 0. A similar argument using Lemma 2.5.6 shows that
J(VZJ ) = 0, proving the proposition. ut

2.6 Zeta Integrals

A certain theory of zeta integrals for generic, irreducible, admissible represen-
tations of GSp(4, F ) plays an important role in this work. This theory assigns
to every such π an L-factor L(s, π) and an ε-factor ε(s, π, ψc1,c2). For the
convenience of the reader, we will carefully review this theory. This theory
was first considered by Novodvorsky. See [N] and the references it contains.
Some subsequent important references are Part B of [GPSR], [Bu], [So], [B]
and [Tak]. To begin, we need to recall some fundamental results about generic
representations. The first result is about the behavior of elements of a Whit-
taker model on the diagonal subgroup of GSp(4, F ).
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Lemma 2.6.1. Let π be a generic, irreducible, admissible representation of
GSp(4, F ). There exist a positive integer N , unitary characters χ1, . . . , χN ,
χ′1, . . . , χ

′
N , real numbers u1, . . . , uN , u′1, . . . , u

′
N , nonnegative integers n1 ≥

0, . . . , nN ≥ 0 and n′1 ≥ 0, . . . , n′N ≥ 0 with the following property: For any
W ∈ W(π, ψc1,c2) there exist ϕ1, . . . , ϕN ∈ S(F × F ) such that

W (


ab
a

1
b−1

) =
N∑
k=1

ϕk(a, b)χk(a)χ′k(b)|a|uk |b|u
′
k(log |a|)nk(log |b|)n

′
k .

Proof. This is Proposition 1.1.1 on page 155 of [J]. ut

Lemma 2.6.2. Let π be a generic, irreducible and admissible representation
of GSp(4, F ). Let W ∈ W(π, ψc1,c2), and let M ≥ 0 be a nonnegative integer
such that W (gk) = W (g) for g ∈ GSp(4, F ) and k ∈ GSp(4, o) with k ≡ 1
mod pM .

i) If a, b ∈ F× and v(a) < v(b)−M or 2v(b) < v(c)−M , then

W (


a
b
cb−1

ca−1

) = 0.

ii) If a ∈ F×, and x /∈ p−M , then W (


a
a
x 1

1

) = 0.

Proof. i) Let a, b ∈ F×. Let x, y ∈ $Mo. Then

W (


a
b
cb−1

ca−1

) = W (


a
b
cb−1

ca−1




1 x xy
1 y

1 −x
1

)

= ψ(c1ab−1x)ψ(c2c−1b2y)W (


a
b
cb−1

ca−1

).

Suppose v(a) < v(b) −M , i.e., v(ab−1) < −M . Recalling that ψ(p−1) 6= 1
and c1 ∈ o×, it follows that x 7→ ψ(c1ab−1x) defines a non-trivial character of
$Mo. Letting y = 0 in the above equation and integrating over $Mo gives

(
∫

$M o

dx)W (


a
b
cb−1

ca−1

) = 0.
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The proof for the case 2v(b) < v(c)−M is similar.
ii) Let x /∈ p−M , so that x−1 ∈ pM and v(x) < −M . Let a ∈ F×. Then,

by the useful identity (2.8), we have

W (


a
a
x 1

1

) = W (


a
a

1
1




1
1 x−1

1
1




1
−x−1

−x
1



·


1

1
−1

1




1
1 x−1

1
1

)

= ψ(c2ax−1)(π(s2)W )(


a
−ax−1

−x
1

).

The element π(s2)W is also invariant under the elements k ∈ GSp(4, o), k ≡ 1
mod pM . Applying i) to π(s2)W we get

W (


a
a
x 1

1

) = 0

since v(a) < v(−ax−1)−M . ut

Proposition 2.6.3. Let π be a generic, irreducible and admissible represen-
tation of GSp(4, F ), and let the notation be as in Lemma 2.6.1. For all
W ∈ W (π, ψc1,c2) and s ∈ C with Real(s) > 3/2 −min(u1, . . . , uN ) the zeta
integral

Z(s,W ) :=
∫
F×

∫
F

W (


a
a
x 1

1

)|a|s−3/2 dx d×a (2.54)

converges absolutely to an element of C(q−s).

Proof. Let W ∈W (π, ψc1,c2). Let M be defined as in Lemma 2.6.2. Then

∫
F×

∫
F

|W (


a
a
x 1

1

)||a|Real(s)−3/2 dx d×a

=
∫
F×

∫
p−M

|W (


a
a
x 1

1

)||a|Real(s)−3/2 dx d×a
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=
∫
F×

∫
p−M/pM

∫
pM

|W (


a

a
x+ y 1

1

)||a|Real(s)−3/2 dy dx d×a

=
∑

x∈p−M/pM

q−M
∫
F×

|Wx(


a
a

1
1

)||a|Real(s)−3/2 d×a,

where

Wx = π(


1

1
x 1

1

)W

for x ∈ F . Fix x ∈ p−M . Applying Lemma 2.6.1 to Wx, we have

Wx(


a
a

1
1

) =
∑

k∈{1,...,N}
n′k=0

ϕk(a, 1)χk(a)|a|uk(log |a|)nk .

Therefore,

∫
F×

|Wx(


a
a

1
1

)||a|Real(s)−3/2 d×a

≤
∑

k∈{1,...,N}
n′k=0

∫
F×

|ϕk(a, 1)||a|Real(s)+uk−3/2| log |a||nk d×a.

Let k ∈ {1, . . . , N} with n′k = 0. A computation proves that∫
F×

|ϕk(a, 1)||a|Real(s)+uk−3/2| log |a||nk d×a <∞

for Real(s) > 3/2 − uk. The claim about convergence from the statement of
the proposition follows.

Next, an argument similar to the one above proves that the function s 7→
Z(s,W ), defined on Real(s) > 3/2−min(u1, . . . , uN ), is a sum of functions of
the form ∫

F×

ϕ(a)χk(a)|a|s+uk−3/2(log |a|)nk d×a (2.55)

for some ϕ ∈ S(F ) and k such that 1 ≤ k ≤ N and n′k = 0. Fix such a ϕ and
k. Let M > 0 be a positive integer such that ϕ is constant on pM and has
support in p−M . A computation shows that (2.55) is
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ϕ(0)(
∫
o×

χk(u) d×u)(− log q)nk

∞∑
i=M

ink(χk($)q−(s+uk−3/2))i

+ (− log q)nk

M+1∑
i=−M

( ∫
$io×

ϕ(a)χk(a) d×a
)
ink(q−(s+uk−3/2))i. (2.56)

This is an element of C(q−s). ut

Let π be a generic, irreducible, admissible representation of GSp(4, F ). It
is important to understand the dependence of the Z(s,W ) on the choice of
c1, c2 ∈ o× in the definition of the Whittaker model. Suppose that c1, c2, c′1c

′
2 ∈

o×. A straightforward computation verifies that

W ∈W(π, ψc1,c2)

⇐⇒ W ′ = W (


c′1
c1

1
c2
c′2

c1c2
c′1c

′
2

 ·) ∈ W(π, ψc′1,c′2).

Another computation shows that for W ∈ W(π, ψc1,c2),

∫
F×

∫
F

W (


a
a
x 1

1

)|a|s−3/2 dx d×a

=
∫
F×

∫
F

W ′(


a
a
x 1

1



c′1
c1

1
c2
c′2

c1c2
c′1c

′
2


−1

)|a|s−3/2 dx d×a.

(2.57)

It follows that I(π), the C vector subspace of C(q−s) spanned by the Z(s,W )
for W ∈ W(π, ψc1,c2), does not depend on the choice of c1, c2 ∈ o×. We call
I(π) the zeta integral ideal of π. The next result shows that I(π) really is a
fractional ideal of the appropriate ring.

Proposition 2.6.4. Let π be a generic, irreducible, admissible representa-
tion of GSp(4, F ) with trivial central character. Then I(π) is a non-zero
C[q−s, qs] module containing C, and there exists R(X) ∈ C[X] such that
R(q−s)I(π) ⊂ C[q−s, qs], so that I(π) is a fractional ideal of the principal ideal
domain C[q−s, qs] whose quotient field is C(q−s). The fractional ideal I(π) ad-
mits a generator of the form 1/Q(q−s) with Q(0) = 1, where Q(X) ∈ C[X].

Proof. To see that I(π) is a C[q−s, qs] submodule of C(q−s) it suffices to show
that if W ∈ W(π, ψc1,c2), then q±sZ(s,W ) ∈ I(π). Let W ∈ W(π, ψc1,c2) and
ε ∈ {±1}. Then
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Z(s, π(


$ε

$ε

1
1

)W ) = qεsq−ε/2Z(s,W ).

Therefore, qεsZ(s,W ) ∈ I(π).
Next, we prove that I(π) contains C. To do this we will use P3-theory.

Since it is convenient, we will take c1 = −1 and c2 = 1. Let V be a model
for π, and let p : V → VZJ = V/V (ZJ) be the projection map. Let V2 ⊂ VZJ

be as in Lemma 2.5.3, and define X = p−1(V2). Then X is a Q subspace of
V . Since π is generic, V2 is non-zero, and V2

∼= τP3
GL(0)(1) = c-IndP3

U3
Θ. Fix an

isomorphism
V2

j−−−−→
∼

c-IndP3
U3
Θ,

let
c-IndP3

U3
Θ

e−−−−→ C

be evaluation at the identity, and let l be the composition

X = p−1(V2)
p−−−−→ V2

j−−−−→ c-IndP3
U3
Θ

e−−−−→ C.

A computation verifies that

l(π(


1 x ∗ ∗

1 y ∗
1 −x

1

)W ) = ψ(−x+ y)l(W )

for W ∈ X and x, y ∈ F . Thus, l is a non-zero element of HomU (X,ψ−1,1),
and l may be regarded as a non-zero linear map XU,ψ−1,1 → C. By b) of 2.35
of [BZ], the sequence

0 −→ XU,ψ−1,1 −→ VU,ψ−1,1

is exact. Since π is generic and Whittaker functionals are unique up to scalars,
VU,ψ−1,1 is one-dimensional. It follows that l admits an extension to V that is
an element of HomU (V, ψ−1,1). Let V = W(π, ψ−1,1). The evaluation linear
functional on V which sends W ∈ V to W (1) also defines a non-zero element
of HomU (V, ψ−1,1). Therefore, there exists c ∈ C× such that l(W ) = cW (1)
for W ∈ X. By absorbing c into j we may assume c = 1. Let W be in X, and
set f = j(p(W )) ∈ c-IndP3

U3
(Θ). Then, for q ∈ Q,

W (q) = (π(q)W )(1)
= (j ◦ p)(π(q)W )(1)
= j(p(π(q)W ))(1)

(2.51)
= j(i(q)p(W ))(1)



80 2 Representation Theory

= (i(q)j(p(W )))(1)
= j(p(W ))(i(q))
= f(i(q)).

Hence

Z(s,W ) =
∫
F×

∫
F

W (


a
a
x 1

1

)|a|s−3/2 dx d×a

=
∫
F×

∫
F

f(

ax 1
1

)|a|s−3/2 dx d×a.

Therefore, I(π) contains all the elements of C(q−s) of the form

∫
F×

∫
F

f(

ax 1
1

)|a|s−3/2 dx d×a (2.58)

for f ∈ c-IndP3
U3
Θ. If q ∈ P3, we can write

q =

1 u12 u13

1 u23

1

t1 t2
1

k11 k12

k21 k22

1


where u12, u13, u23 ∈ F , t1, t2 ∈ F× and[

k11 k12

k21 k22

]
∈ GL(2, o).

Define f0 ∈ c-IndP3
U3
Θ by

f0(q) = ψ(u12 + u23)χo×(t1)χo×(t2).

A computation verifies that f0 is well-defined and gives an element of c-IndP3
U3
Θ.

Using (2.8) it is easily checked that the value of the integral (2.58) (with f0
in place of f) is constant. This proves that C ⊂ I(π).

To prove the existence of R(X) as in the statement of the proposition we
note that in the proof of Proposition 2.6.3 we showed that the elements of
I(π) are linear combinations of functions of the form (2.56) with ϕ ∈ S(F )
and k such that 1 ≤ k ≤ N and n′k = 0. Since M , the nk, the χk and the uk
are determined by π, there exists R(X) ∈ C[X] such that R(q−s) multiplied
by the functions in (2.56) is contained in C[q−s, qs].

Finally, since I(π) 6= 0 is a fractional ideal of C[q−s, qs], and since C[q−s, qs]
is a principal ideal domain, there exist P1(X), P2(X) ∈ C[X] such that I(π) =
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C[q−s, qs](P1(q−s)/P2(q−s)). We may assume that P1(X) and P2(X) are rela-
tively prime. Since 1 ∈ I(π), there exists a polynomial A(X,Y ) ∈ C[X,Y ] such
that 1 = A(q−s, qs)(P1(q−s)/P2(q−s)), so that P2(q−s) = A(q−s, qs)P1(q−s).
Since P1(X) and P2(X) are relatively prime, and any element z of C× can
be written as z = q−s for some s ∈ C, it follows that P1(X) has no non-zero
roots. Write P1(X) = aXt for t ≥ 0 a nonnegative integer and a ∈ C×.
Then I(π) = C[q−s, qs](a(q−s)t/P2(q−s)) = C[q−s, qs](1/P2(q−s)). Write
P2(X) = bXrQ(X) for r ≥ 0 a nonnegative integer, b ∈ C×, and Q(X) ∈ C[X]
with Q(0) = 1. Then I(π) = C[q−s, qs](1/Q(q−s)). ut

With Q being as in the proposition, the function

L(s, π) =
1

Q(q−s)

is called the L-function of the generic, irreducible, admissible representation
π. These functions have been explicitly computed in [Tak].

The zeta integrals (2.54) satisfy a local functional equation. We require it
only for representations π with trivial central character, so, for simplicity, we
shall make this assumption in the statement of the result. Let

w = u0 =


1
−1

1
−1

 = s−1
2 s1s2. (2.59)

Proposition 2.6.5. Let π be a generic, irreducible, admissible representa-
tion of GSp(4, F ) with trivial central character. Then there exists an element
γ(s, π, ψc1,c2) of C(q−s) such that

Z(1− s, π(w)W ) = γ(s, π, ψc1,c2)Z(s,W ) (2.60)

for W in W(π, ψc1,c2). The γ-factor γ(s, π, ψc1,c2) does not depend on the
choice of c1, c2 ∈ o×.

Proof. By Proposition 2.6.3 there exists a positive real number σ such that
for Real(s) > σ and W ∈ W(π, ψc1,c2) the integral defining Z(s,W ) converges
absolutely. Let I(π) = (1/Q(q−s))C[q−s, qs] as in Proposition 2.6.4. We may
assume that σ is sufficiently large so that Q(q−s) 6= 0 and Q(q−(1−s)) 6= 0 for
Real(s) > σ. It follows that Z(s,W ), regarded as a rational functional in q−s,
can be evaluated at s and 1− s for Real(s) > σ and for all W ∈ W(π, ψc1,c2).
Fix s ∈ C such that Real(s) > σ. We consider the linear functionals

L :W(π, ψc1,c2)→ C, L′ :W(π, ψc1,c2)→ C

defined by
L(W ) = Z(s,W ), L′(W ) = Z(1− s, π(w)W )
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for W ∈ W(π, ψc1,c2). Computations show that L and L′ satisfy i), ii), iii) and
iv) of Proposition 2.5.7 with χ = |·|1/2−s. We may assume that σ is sufficiently
large so that | · || · |1/2−s is not contained in C(π); see Proposition 2.5.7 for the
notation. Also, since I(π) contains C, we have L 6= 0. By Proposition 2.5.7
there exists a complex number γ(s, π, ψc1,c2) such that L′ = γ(s, π, ψc1,c2)L,
i.e.,

Z(1− s, π(w)W ) = γ(s, π, ψc1,c2)Z(s,W )

for W ∈ W(π, ψc1,c2). Choose W ∈ W(π, ψc1,c2) such that Z(s,W ) = 1.
Then γ(s, π, ψc1,c2) = Z(1− s, π(w)W ) for Real(s) > σ, so that the function
γ(s, π, ψc1,c2) is a rational functional in q−s. The first claim of the proposition
follows. The second assertion of the proposition is proved using the functional
equation and the equality (2.57). ut

We note that several references incorrectly state that the functional equa-
tion (2.60) holds with w replaced with certain other elements. The paper [N]
asserts in Theorem 1 that (2.60) holds with w replaced by

1
1

1
1

 .
This is false, since

1
1

1
1




1 y
1

1 −y
1




1
1

1
1


−1

=


1 −y

1
1 y

1

 .
This error also appears in [B], pages 49-50. Similarly, the reference [Bu], page
93, asserts that the functional equation holds with w replaced by

1
1

−1
−1

 .
This is also false, for the same reason. The same error appears in [Tak], The-
orem 2.1.

Let π be a generic, irreducible, admissible representation of GSp(4, F ) with
trivial central character. Another form of the functional equation involves the
Atkin–Lehner element un defined in (2.2). Easy algebra shows that

Z(1− s, π(un)W ) = qn(s−1/2)γ(s, π, ψc1,c2)Z(s,W ) (2.61)

for all W ∈ W(π, ψc1,c2). The ε-factor of the representation π with trivial
central character is defined as
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ε(s, π, ψc1,c2) = γ(s, π, ψc1,c2)
L(s, π)

L(1− s, π)
.

Using ε, the functional equation takes the form

Z(1− s, π(w)W )
L(1− s, π)

= ε(s, π, ψc1,c2)
Z(s,W )
L(s, π)

. (2.62)

Proposition 2.6.6. Let π be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character. The factor ε(s, π, ψc1,c2) does not
depend on the choice of c1, c2 ∈ o×. There exists ε = ±1 and an integer N
such that ε(s, π, ψc1,c2) = εq−N(s−1/2).

Proof. The factor ε(s, π, ψc1,c2) does not depend on the choice of c1, c2 ∈ o×

since γ(s, π, ψc1,c2) does not depend on c1, c2 ∈ o×. A computation using the
definition of ε(s, π, ψc1,c2) shows that

ε(s, π, ψc1,c2)ε(1− s, π, ψc1,c2) = γ(s, π, ψc1,c2)γ(1− s, π, ψc1,c2).

Two applications of the functional equation (2.60) yield

Z(1− s, π(w)W ) = γ(s, π, ψc1,c2)γ(1− s, π, ψc1,c2)Z(1− s, π(w)W )

for W ∈ W(π, ψc1,c2). By Proposition 2.6.4, there exists W ∈ W(π, ψc1,c2)
such that Z(1− s, π(w)W ) 6= 0. Hence, γ(s, π, ψc1,c2)γ(1− s, π, ψc1,c2) = 1, so
that ε(s, π, ψc1,c2)ε(1−s, π, ψc1,c2) = 1. Next, let W0 ∈ W(π, ψc1,c2) such that
Z(s,W0) = L(s, π). By the ε-factor form (2.62) of the functional equation, we
have

ε(s, π, ψc1,c2) =
Z(1− s, π(w)W0)

L(1− s, π)
.

By Proposition 2.6.4, this is a polynomial in q−s and qs. Hence, there exists
an integer M such that q−Msε(s, π, ψc1,c2) = R(q−s) for some R(X) ∈ C[X].
Using ε(s, π, ψc1,c2)ε(1 − s, π, ψc1,c2) = 1 we get qMR(q−s)R(q−(1−s)) = 1.
It follows that R has no zeros in C×; hence, R is of the form aq−bs for some
a ∈ C× and integer b. Therefore, we may write ε(s, π, ψc1,c2) = εq−N(s−1/2) for
some ε ∈ C× and integer N . Evaluating at 1/2, we obtain ε(1/2, π, ψc1,c2) = ε;
on the other hand, 1 = ε(1/2, π, ψc1,c2)ε(1 − 1/2, π, ψc1,c2) = ε2, so that
ε = ±1. ut

Our work will result in more precise information about N and the sign ε
from Proposition 2.6.6.





3

Paramodular Vectors

In this chapter we define and begin the analysis of paramodular vectors in
representations of GSp(4, F ) with trivial central character. In the first section
we prove that paramodular vectors at different levels are linearly independent
provided that the subspace of vectors fixed by Sp(4, F ) is trivial. In the sec-
ond section we introduce three level raising operators and prove that, except
for one explicit non-generic Iwahori-spherical representation, these level rais-
ing operators are injective. Thus, except for this representation, the spaces
of paramodular vectors in irreducible, admissible representations grow as the
level increases. These level raising operators are integral to many of the proofs
of the main results of this work, and are precisely the operators needed to ob-
tain oldforms from newforms. The third section defines certain level lowering
operators and gives explicit formulas. These level lowering operators are less
important for our purposes than the level raising operators, but they appear
in certain relations involving Hecke operators in Chap. 6. The methods used
to prove the results of the first three sections are algebraic, and do not require
explicit models or realizations. The final section of this chapter gives the first
indication that P3-theory is useful in the study of paramodular vectors. The
basic reason for this is that non-zero paramodular vectors do not vanish when
projected to the P3-filtration. As a first consequence of P3-theory we deter-
mine a list of non-generic, irreducible, admissible representations with trivial
central characters that do not admit non-zero paramodular vectors. This list
includes all non-generic supercuspidal representations; in fact, this list turns
out to be exactly the list of all non-paramodular representations.

3.1 Linear Independence

To begin, let (π, V ) be a smooth representation of GSp(4, F ) for which the
center of GSp(4, F ) acts trivially. For a non-negative integer n ≥ 0, we denote
by V (n) the subspace of V consisting of all vectors v ∈ V such that π(k)v = v
for all k ∈ K(pn). Here, K(pn) is the paramodular group of level pn as defined
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in Sect. 2.1. A non-zero vector in any of the V (n) is called a paramodular
vector. By the definition of admissibility, if π is admissible, then V (n) is finite-
dimensional for all n. Another initial observation involves the operator π(un)
where un is the Atkin–Lehner element as in (2.2). Since K(pn) is normalized by
un, the operator π(un) induces an endomorphism of V (n). Since we assumed
that the center of π acts trivially, and since u2

n is a scalar, π(u2
n) is the identity

on V . Consequently, the endomorphism π(un) of V (n) is an involution and
splits V (n) into ±1 eigenspaces V±(n).

Our first result in this chapter asserts that paramodular vectors at dif-
ferent levels are linearly independent. A consequence of this is that no V (n)
is contained in a V (m) for m 6= n, and even V (n) ∩ V (m) = 0 for m 6= n.
To prove linear independence we need a lemma which asserts that with one
extra particular element, the intersection of a finite collection of paramodular
groups generates a group containing Sp(4, F ). This lemma in turn requires
the following analogous result about SL(2, F ).

Lemma 3.1.1. Let N > 0 be a positive integer. The subgroup J of SL(2, F )
generated by [

1 p−N

1

]
and

[
−1

1

]
is SL(2, F ).

Proof. The subgroup J contains[
1 o

1

]
and

[
1
o 1

]
and hence SL(2, o). The identity[

$−N

$N

]
=

[
(1 +$N )−1

1 +$N

] [
1

−(1 +$N )−1$N 1

]
·
[
1 $−N

1

] [
1
1 1

] [
1 −(1 +$N )−1

1

]
proves that [

$−N

$N

]
∈ J.

The identities[
$−N

$N

]j [
1 x

1

] [
$−N

$N

]−j
=

[
1 $−2Njx

1

]
,[

$−N

$N

]−j [
1
y 1

] [
$−N

$N

]j
=

[
1

$−2Njy 1

]
for x, y ∈ F prove that the elements of SL(2, F ) of the form
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1 ∗

1

]
and

[
1
∗ 1

]
are contained in J . It is known that such elements generate SL(2, F ). Hence,
J = SL(2, F ). ut

The last lemma can be used to prove an analogous result for GSp(4, F )
involving the paramodular group. In direct analogy to Lemma 3.1.1, this
statement asserts that a fixed paramodular group, or even the intersection
of finitely many paramodular groups, along with a certain extra group ele-
ment, generates a subgroup that contains at least Sp(4, F ).

Lemma 3.1.2. Let k ≥ 1 be an integer, and let 0 ≤ n1 < · · · < nk be non-
negative integers. Let m ≥ 0 be a non-negative integer such that m < n1 or
nk < m. Then the subgroup of GSp(4, F ) generated by

K(pn1) ∩ · · · ∩K(pnk) and tm =


−$−m

1
1

$m

 ∈ K(pm)

contains Sp(4, F ).

Proof. Let H be the subgroup generated by K(pn1)∩· · ·∩K(pnk) and tm. We
first prove the claim that H contains the subgroup

a b
1

1
c d

 , [
a b
c d

]
∈ SL(2, F ).

By definition the group K(pn1) ∩ · · · ∩ K(pnk), and hence H, contains the
elements 

a b$−n1

1
1

c$nk d


where a, b, c, d ∈ o and [

a b$−n1

c$nk d

]
∈ SL(2, F ).

By definition, H also contains tm. Therefore, to prove our initial claim it will
suffice to show that the subgroup H ′ of SL(2, F ) generated by[

−$−m

$m

]
and

[
a b$−n1

c$nk d

]
, a, b, c, d ∈ o, ad− bc$nk−n1 = 1
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is SL(2, F ). To prove H ′ = SL(2, F ) it will suffice to prove that[
$m

1

]
H ′

[
$−m

1

]
= SL(2, F ).

This subgroup H ′′ is generated by[
−1

1

]
and

[
a b$m−n1

c$nk−m d

]
, a, b, c, d ∈ o, ad− bc$nk−n1 = 1.

Assume m < n1. Then H ′′ contains[
−1

1

]
and

[
1 pm−n1

1

]
.

By Lemma 3.1.1 we have H ′′ = SL(2, F ). Assume m > nk. Then H ′′ contains[
−1

1

]
and

[
1

pnk−m 1

]
,

and again by Lemma 3.1.1, H ′′ = SL(2, F ). Our claim follows.
Finally, we complete the proof of the lemma. By what we have already

shown, H contains all the elements of Sp(4, F ) of the form
1 ∗

1
1

1

 .
By definition, H contains K(pn1) ∩ · · · ∩K(pnk) and hence

1 1
1

1 −1
1

 and


1 1

1 1
1

1

 .
Conjugating these elements by the elements

a
1

1
a−1

 , a ∈ F×

of H proves that H also contains all the elements of Sp(4, F ) of the form
1 ∗

1
1 ∗

1

 and


1 ∗

1 ∗
1

1

 .
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Therefore, H contains the Heisenberg subgroup of Sp(4, F ), i.e., all the ele-
ments of Sp(4, F ) of the form 

1 ∗ ∗ ∗
1 ∗

1 ∗
1

 .
A similar argument proves that H contains the transpose of this subgroup.
Since SL(2, F ) is generated by elements of the form[

1 ∗
1

]
and

[
1
∗ 1

]
it follows that H contains the Levi subgroup of the Siegel parabolic subgroup
of Sp(4, F ), and in particular the element s1. Conjugating elements that we
already know lie in H by s1 proves that H contains the elements of Sp(4, F )
of the form 

1 ∗ ∗
1 ∗ ∗

1
1

 and


1

1
∗ ∗ 1
∗ ∗ 1

 .
These elements generate Sp(4, F ), so that the group generated by H contains
Sp(4, F ). ut

Using the last generating result it is straightforward to prove the linear
independence of paramodular vectors at different levels.

Theorem 3.1.3. Let (π, V ) a smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially. Assume that the subspace of vectors of
V fixed by Sp(4, F ) is trivial. Then paramodular vectors at different levels are
linearly independent. More precisely, for i = 1, . . . , r let vi ∈ V (ni), where
ni 6= nj for i 6= j. Then v1 + · · ·+ vr = 0 implies v1 = · · · = vr = 0.

Proof. We may assume that n1 < · · · < nr. The element −v1 = v2 + · · ·+vr is
invariant under tn1 (see (2.3)) and under K(pn2)∩· · ·∩K(pnr ). Since n1 < n2,
it is invariant under Sp(4, F ) by Lemma 3.1.2. Hence, v2 + · · · + vr = 0.
Applying the same argument successively gives v1 = · · · = vr = 0. ut

Suppose that (π, V ) is a smooth representation of GSp(4, F ) such that the
center of GSp(4, F ) acts trivially. Let

Vpara =
⊕
n≥0

V (n). (3.1)

If the subspace of vectors in V fixed by Sp(4, F ) is trivial, then by Theorem
3.1.3 the space Vpara can be identified with the subspace spanned by the spaces
V (n), n ≥ 0. One of our goals is to describe the structure of this vector space.
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3.2 The Level Raising Operators θ, θ′ and η

Let (π, V ) be a smooth representation of GSp(4, F ) such that the center of
GSp(4, F ) acts trivially. In this section we relate paramodular vectors in V
at different levels by defining and studying three level raising operators θ :
V (n) → V (n + 1), θ′ : V (n) → V (n + 1), and η : V (n) → V (n + 2) for
non-negative integers n ≥ 0. These operators are examples of a general way
to define operators between spaces of paramodular vectors at two levels. We
now describe this method.

Level Changing Operators

Again let (π, V ) be a smooth representation of GSp(4, F ) such that the center
of GSp(4, F ) acts trivially, and fix the Haar measure on GSp(4, F ) that gives
GSp(4, o) measure one. Let g ∈ GSp(4, F ), and let m ≥ 0 be a non-negative
integer. Let V → V (m) be projection, i.e., the map that sends v ∈ V to∫

K(pm)

π(k)v dk.

The composition of π(g) : V → V with projection V → V (m) defines a linear
map V → V (m), and linear combinations of such maps are the most general
linear maps from V to V (m) that can be constructed using the operators
defined by the representation. If n ≥ 0 is another non-negative integer, then
we can consider the restriction of this map to V (n), divide it by the volume
of J = K(pm) ∩ π(g)K(pn)π(g)−1, and thus obtain a map

T : V (n)→ V (m).

We call such a map a level changing operator. If n ≤ m, then we refer to T
as a level raising operator. In Sect. 3.3 we will also consider level lowering
operators. By its method of definition, the map T has an extension to V ,
which is given by

Tv =
1

vol(J)

∫
K(pm)

π(kg)v dk, v ∈ V.

Note that we also denote the extension to V by T . It should be clear from the
context whether we mean T : V (n) → V (m) or its extension to V . It will be
convenient to write T : V (n)→ V (m) as a finite sum. Let

K(pm) = ti∈IhiJ

be a disjoint decomposition. Then a computation shows that

Tv =
∑
i∈I

π(hig)v, v ∈ V (n). (3.2)
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Of course, even though T has an extension to V , this formula is only valid on
V (n). Since V (n) and V (m) admit the Atkin–Lehner involutions π(un) and
π(um), respectively, we can also consider the operator π(um) ◦T ◦π(un) from
V (n) to V (m). We call this operator the dual of T . Another computation
verifies that this dual is the level changing operator associated to umgun, and
that

(π(um) ◦ T ◦ π(un))v =
∑
i∈I

π(umhium)π(umgun)v, v ∈ V (n). (3.3)

The extension of π(um) ◦ T ◦ π(un) to V is given by

(π(um) ◦ T ◦ π(un))v =
1

vol(J)

∫
K(pm)

π(kumgun)v, v ∈ V.

Definitions of θ, θ′ and η

Continue to let (π, V ) be a smooth representation of GSp(4, F ) such that the
center of GSp(4, F ) acts trivially, and let n ≥ 0 be a non-negative integer. The
first level raising operator θ′ : V (n) → V (n + 1) that we define is obtained
by letting m = n+ 1 and g = 1 in the definitions of the last subsection. The
formula for the extension of θ′ to V is

θ′v =
1

vol(K(pn+1) ∩K(pn))

∫
K(pn+1)

π(k)v dk, v ∈ V. (3.4)

The second level raising operator θ : V (n)→ V (n+1) is defined to be the dual
π(un+1) ◦ θ′ ◦ π(un). By the last subsection, this is the level raising operator
from V (n) to V (n+ 1) associated to un+1un. This element is $n times

1
1
$
$

 .
Since the center of GSp(4, F ) acts trivially on V , θ is also the level raising
operator from V (n) to V (n + 1) defined by the last displayed element of
GSp(4, F ). The extension of θ to V is given by the formula

θv =
1

vol(K(pn+1) ∩K(pn))

∫
K(pn+1)

π(k


1

1
$
$

)v dk, v ∈ V.

For most irreducible, admissible representations of GSp(4, F ) with trivial cen-
tral character we have θ 6= θ′ for some n. We will later characterize the few
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representations for which θ = θ′; see Proposition 5.5.13. Finally, we define
η : V (n)→ V (n+ 2) to be the level raising operator associated to

η =


$−1

1
1
$

 (3.5)

Since K(pn+2) = K(pn+2) ∩ ηK(pn)η−1, on V this operator is just given by

ηv = π(η)v, v ∈ V.

The matrix identity

$


$−1

1
1
$




1
−1

$n

−$n

 =


1
−1

$n+2

−$n+2



$−1

1
1
$


shows that η ◦ π(un) = π(un+2) ◦ η. In other words, η is compatible with
Atkin–Lehner involutions (or self-dual).

Our next task is to obtain summation formulas for θ and θ′. For this we
require the following lemma.

Lemma 3.2.1. Let n ≥ 0 be a non-negative integer. A complete system of
representatives for K(pn+1)/(K(pn+1)∩K(pn)) is given by the q+ 1 elements

tn+1 =


−$−(n+1)

1
1

$n+1

 and


1 c$−(n+1)

1
1

1

 , c ∈ o/p.

Proof. The group K(pn+1) ∩ K(pn) is the subgroup of k ∈ GSp(4, F ) such
that λ(k) ∈ o× and

k ∈


o o o p−n

pn+1 o o o
pn+1 o o o
pn+1 pn+1 pn+1 o

 .
It is easy to see that the cosets represented by the elements from the statement
of the lemma are pairwise disjoint. To prove that they exhaust K(pn+1), let
k ∈ K(pn+1). Write

k =


a1 a2 b1 b2$

−(n+1)

a3$
n+1 a4 b3 b4

c1$
n+1 c2 d1 d2

c3$
n+1 c4$

n+1 d3$
n+1 d4


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where ai, bi, ci, di ∈ o, 1 ≤ i ≤ 4. If d4 ∈ o×, then
1 −d−1

4 b2$
−(n+1)

1
1

1

 k ∈ K(pn+1) ∩K(pn).

If d4 /∈ o×, then

t−1
n+1k =


c3 c4 d3 d4$

−(n+1)

a3$
n+1 a4 b3 b4

c1$
n+1 c2 d1 d2

−a1$
n+1 −a2$

n+1 −b1$n+1 −b2


is contained in K(pn+1) ∩K(pn). ut

Lemma 3.2.2. Let (π, V ) be a smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially, and let n ≥ 0 be a non-negative integer.
Then the operators θ and θ′ from V (n) to V (n+1) have the following explicit
formulas.

i)

θv = π(


1

1
$
$

)v +
∑
c∈o/p

π(


1
$

1
$




1
1 c$−1

1
1

)v, v ∈ V (n).

(3.6)
ii)

θ′v = ηv +
∑
c∈o/p

π(


1 c$−n−1

1
1

1

)v, v ∈ V (n). (3.7)

Proof. i) By the definition of θ, (3.3), Lemma 3.2.1, and the matrix identity

un+1


d −c$−(n+1)

1
1

−b$n+1 a

un+1 = $n+1


1
a b
c d

1


we have

θv = π(


1
−1

1
1




1
1
$
$

)v +
∑
c∈o/p

π(


1

1
c 1

1




1
1
$
$

)v

for v ∈ V (n). Using (2.8) we calculate:
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θv = π(


1
$

1
$

)v +
∑
c∈o/p

π(


1

1
$
$




1
1

c$−1 1
1

)v

= π(


1
$

1
$

)v + π(


1

1
$
$

)v

+
∑

c∈(o/p)×

π(


1

1
$
$




1
−c−1$

−c$−1

1




1
1 c$−1

1
1

)v

= π(


1
$

1
$

)v + π(


1

1
$
$

)v

+
∑

c∈(o/p)×

π(


1
$

1
$




1
1 c−1$−1

1
1

)v

= π(


1

1
$
$

)v +
∑
c∈o/p

π(


1
$

1
$




1
1 c$−1

1
1

)v.

This proves i). To prove ii) we note that by (3.2) and Lemma 3.2.1, we have
for v ∈ V (n)

θ′v = π(tn+1)v +
∑
c∈o/p

π(


1 c$−(n+1)

1
1

1

)v.

Now tn+1 = ηtn. Therefore, π(tn+1)v = π(η)π(tn)v = π(η)v for v ∈ V (n).
The formula in ii) follows. ut

In particular, we note that the linear maps θ and θ′ from V (n) to V (n+1)
can be defined using elements of B(F ) only.

Oldforms and Newforms

Let (π, V ) be a smooth representation of GSp(4, F ) such that the center of
GSp(4, F ) acts trivially. By piecing together the level raising operators θ, θ′

and η at all levels, we obtain endomorphisms of the space Vpara defined in
(3.1). We denote these endomorphisms again by θ, θ′ and η, respectively.
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Lemma 3.2.3. Let (π, V ) be a smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially. The endomorphisms θ, θ′ and η of Vpara

commute pairwise.

Proof. The matrix η in (3.5) commutes with the matrices occurring in (3.6).
Hence η and θ commute. We already noticed that η commutes with Atkin–
Lehner involutions. Since θ′ = π(un+1) ◦ θ ◦ π(un) it follows that η and θ′

commute. Finally, it is an easy calculation using the formulas in Lemma 3.2.2
to check that θ and θ′ commute. ut

Let (π, V ) be a smooth representation of GSp(4, F ) such that the center of
GSp(4, F ) acts trivially. Let A be the commutative subalgebra of End(Vpara)
generated by the endomorphisms θ, θ′ and η. Let I ⊂ A be the ideal generated
by θ, θ′ and η. Assume that π has non-zero paramodular vectors, and letNπ be
the minimal paramodular level, i.e., the smallest integer n such that V (n) 6= 0.
By definition,

Vpara = V (Nπ)⊕
⊕
n>Nπ

V (n).

We call V (Nπ) the space of newforms and
⊕

n>Nπ
V (n) the space of oldforms

of the representation π. The Oldforms Principle, which will be proved in The-
orem 7.5.7, is the statement that IV (Nπ) =

⊕
n>Nπ

V (n). In other words, it
says that any paramodular vector of level higher than the minimal level can
be obtained by repeatedly applying level raising operators to the newforms
and taking linear combinations.

Theta Injectivity

Let (π, V ) be a smooth representation of GSp(4, F ) such that the center of
GSp(4, F ) acts trivially. In this subsection we compute the kernels of our level
raising operators. Since η is invertible, we need to just consider θ and θ′. We
will prove that the kernel of θn : V (n) → V (n + 1) is ηl ker θ0 if n = 2l and
ηl ker θ1 if n = 2l + 1. A similar result holds for θ′. As a corollary, we obtain
that θ, θ′ : V (n) → V (n+ 1) are injective for all non-negative integers n ≥ 0
if and only if ker θ0 = ker θ1 = 0. In the next subsection we will determine all
the irreducible, admissible representations of GSp(4, F ) with trivial central
character such that ker θ0 6= 0 or ker θ1 6= 0, that is, all the irreducible,
admissible representations such that θ or θ′ are not injective for some n. It
turns out there is only one such representation.

The computations of ker θ and ker θ′ will be a consequence of a stronger
result. Namely, suppose that n is a positive integer n ≥ 2, and v ∈ V (n) and
v1 ∈ V (n − 1) are such that θ′v = ηv1. We will prove that v is divisible by
η, that is, that there exists v2 ∈ V (n − 2) such that ηv2 = v. To apply this
result to the computation of the kernels we take v1 = 0 and use induction.
The first step toward proving the stronger result is to determine under what
conditions elements of V (n) are divisible by η.
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Lemma 3.2.4. Let (π, V ) be a smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially. Let n ≥ 0 be a non-negative integer,
and let v ∈ V (n).

i) Assume n ≥ 2. Then v = ηv1 for some v1 ∈ V (n − 2) if and only if v is
invariant under the group 

1 p−1

1
1 p−1

1

 . (3.8)

ii) Assume n = 0 or n = 1, and assume that the subspace of vectors of V
fixed by Sp(4, F ) is trivial. Then v is invariant under the group (3.8) if
and only if v = 0.

Proof. i) It is immediate that v is invariant under elements of the form (3.8) if
v = ηv1 for some v1 ∈ V (n− 2). To show the converse, assume that v ∈ V (n)
is invariant under the group (3.8), and define

v1 := η−1v = π(


$

1
1
$−1

)v.

We need to prove that v1 ∈ V (n− 2), i.e., that v1 is invariant under K(pn−2).
Now by Lemma 3.3.1 below, K(pn−2) is generated by the elements in

Kl(pn−2),


$−(n−2)

1
1

$n−2

 ,


1 p−(n−2)

1
1

1

 .
Since v is K(pn) invariant, v1 is invariant under η−1K(pn)η, i.e., the group of
k ∈ GSp(4, F ) such that λ(k) ∈ o× and

k ∈


o p p p−(n−2)

pn−1 o o p
pn−1 o o p
pn−2 pn−1 pn−1 o

 .
As the second two types of generators are in η−1K(pn)η, it follows that we
are reduced to showing that v1 is invariant under Kl(pn−2). Now Kl(pn−2) is
generated by the elements

u
a b
c d

λu−1

 ,


1 x y z
1 y

1 −x
1

 ,


1
x$n−2 1
y$n−2 1
z$n−2 y$n−2 −x$n−2 1

 ,
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where

u, λ ∈ o×,

[
a b
c d

]
∈ GL(2, o), ad− bc = λ, x, y, z ∈ o.

The identities
1

x$n−2 1
y$n−2 1
z$n−2 y$n−2 −x$n−2 1

 = tn−2


1 y −x z$−(n−2)

1 −x
1 −y

1

 t−1
n−2,


1 y

1 y
1

1

 = s2


1 −y

1
1 y

1

 s−1
2 ,

along with the fact that η−1K(pn)η contains tn−2, s2 and the elements
u
a b
c d

λu−1

 ,


1 z$−(n−2)

1
1

1


where

u, λ ∈ o×,

[
a b
c d

]
∈ GL(2, o), z ∈ o,

imply that we are reduced to showing that v1 is invariant under the elements
1 x

1
1 −x

1

 , x ∈ o.

This is true since v is invariant under the elements (3.8).
ii) Suppose n = 1 and v is invariant under the group (3.8). We need to

show that v = 0. By the assumption on π, it will suffice to show that v is
invariant under Sp(4, F ). By Lemma 3.1.2, to prove that v is invariant under
Sp(4, F ) it suffices to show that v is invariant under, say, t3. The identity

1
x 1

1
−x 1

 = s2t1


1 x$−1

1
1 −x$−1

1

 (s2t1)−1

for x ∈ o, along with the fact that v is invariant under all the elements on the
right, implies that v is invariant under this element. Since SL(2, o) is generated
by the subgroups [

1 o
1

]
and

[
1
o 1

]
,
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it follows that v is invariant under the elements[
A
tA−1

]
, A ∈ SL(2, o).

In particular, v is invariant under s1. It follows from Lemma 3.1.1 that v is
invariant under [

A
tA−1

]
, A ∈ SL(2, F ). (3.9)

The identity

t3 =


$−1

$
$−1

$




−$−1

1
1

$



$
$−1

$
$−1


now implies that v is invariant under t3; note that the middle element on the
right is t1.

Finally, suppose n = 0 and v is invariant under the group (3.8). By an
argument similar to the last paragraph, it will suffice to show that v is invariant
under t2. Again, Lemma 3.1.1 shows that v is invariant under the group (3.9).
The identity

t2 =


$−1

$
$−1

$




−1
1

1
1



$
$−1

$
$−1


implies that v is invariant under t2. This completes the proof. ut

Next, we present a sufficient condition for an element of V to be invariant
under the group in (3.8).

Lemma 3.2.5. Let (π, V ) be a smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially. Let n ≥ 0 be a non-negative integer,
and let v′ ∈ V . Assume v′ is invariant under the following groups:

(i)


1 p−n

1
1

1

 ; (ii)


1

1
1

pn+1 1

 ;

(iii)


u

1
1
u−1

 , u ∈ o×; (iv)


1

1
pn 1

pn 1

 .
If
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0 =
∑

x∈p−(n+1)/p−n

π(


1 x

1
1

1

)v′,

then v′ is invariant under tn+1 and under
1 p−1

1
1 p−1

1

 .
Proof. The element

∑
x∈p−(n+1)/p−n

π(


1 x

1
1

1

)v′

is well-defined by the invariance of v′ under type (i) elements; it is zero by
assumption. Therefore,

−v′ =
∑

x∈p−(n+1)/p−n

x6=0

π(


1 x

1
1

1

)v′

=
∑

u∈(o/p)×

π(


1 u$−(n+1)

1
1

1

)v′.

Hence, using the invariance of v′ under (ii) and (iii),

−π(tn+1)v′ =
∑

u∈(o/p)×

π(tn+1


1 u$−(n+1)

1
1

1

)v′

=
∑

u∈(o/p)×

π(


1 −u−1$−(n+1)

1
1

1



·


1 u−1$−(n+1)

1
1

1

 tn+1


1 u$−(n+1)

1
1

1

)v′

=
∑

u∈(o/p)×

π(


1 −u−1$−(n+1)

1
1

1

)π(


u−1

1
1

$n+1 u

)v′



100 3 Paramodular Vectors

=
∑

u∈(o/p)×

π(


1 −u−1$−(n+1)

1
1

1

)v′

= −v′.

Therefore, π(tn+1)v′ = v′. Now for a ∈ o,
1 a$−1

1
1 −a$−1

1

 = tn+1


1

1
−a$n 1

−a$n 1

 t−1
n+1.

As v′ is invariant under the three elements on the right – the middle element
is of type (iv) – it is invariant under the element on the left. ut

We are now ready to prove the stronger result mentioned at the beginning
of this subsection. For the proof it will be convenient to introduce some no-
tation. Let (π, V ) a smooth representation of GSp(4, F ) such that the center
of GSp(4, F ) acts trivially. Assume v ∈ V is invariant under the elements of
GSp(4, F ) in 

1 o
1

1 o
1

 .
We define

Sv =
∑
x∈o/p

π(


1 x$−1

1
1 −x$−1

1

)v. (3.10)

Evidently, Sv is invariant under all the elements in the group
1 p−1

1
1 p−1

1

 .
Clearly, v is invariant under this group if and only if Sv = qv; and Sv = qv if
and only if Sv − qv is invariant under this group.

Theorem 3.2.6. Let (π, V ) be smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially. Let n be a non-negative integer such
that n ≥ 0, and let v ∈ V (n).

i) Assume that n ≥ 2. If θ′v = ηv1 for some v1 ∈ V (n− 1), then there exists
v2 ∈ V (n− 2) such that ηv2 = v.
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ii) Assume that n = 1 and that the subspace of vectors of V fixed by Sp(4, F )
is trivial. If θ′v = 0, then v = 0.

Proof. i) Assume that n ≥ 2 and that θ′v = ηv1 for some v1 ∈ V (n− 1). By
Lemma 3.2.4, since θ′v = ηv1, the vector θ′v is invariant under the group in
(3.8). By the remarks preceding the lemma, we have Sθ′v = qθ′v. To start,
we will compute Sθ′v and qθ′v and then deduce a consequence of the equality
Sθ′v = qθ′v. By the formula in Lemma 3.2.2 we have

Sθ′v =
∑
x∈o/p

π(


1 x$−1

1
1 −x$−1

1

)θ′v

=
∑
x∈o/p

π(


1 x$−1

1
1 −x$−1

1

)(ηv +
∑

y∈p−(n+1)/p−n

π(


1 y

1
1

1

)v)

=
∑
x∈o/p

π(


1 x$−1

1
1 −x$−1

1

)ηv

+
∑
x∈o/p

y∈p−(n+1)/p−n

π(


1 x$−1

1
1 −x$−1

1




1 y
1

1
1

)v

= qηv +
∑

y∈p−(n+1)/p−n

π(


1 y

1
1

1

)(Sv). (3.11)

On the other hand, by another application of the formula in Lemma 3.2.2,

qθ′v = qηv + q
∑

y∈p−(n+1)/p−n

π(


1 y

1
1

1

)v. (3.12)

Comparing (3.11) and (3.12), we get

∑
y∈p−(n+1)/p−n

π(


1 y

1
1

1

)v′ = 0,

where
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v′ = Sv − qv.

Next, we verify that v′ satisfies the assumptions of Lemma 3.2.5, i.e., that v′ is
invariant under the elements in (i), (ii), (iii) and (iv) of Lemma 3.2.5. Because
type (i) elements lie in the center of the Jacobi group and v is in V (n), v′

is invariant under type (i) elements. To prove v′ is invariant under type (ii),
(iii) and (iv) elements it will suffice to prove that Sv is invariant under these
elements, as v is already invariant under these elements. We have for a, b ∈ o,

1
1

1
a$n+1 1




1 b$−1

1
1 −b$−1

1



=


1 b$−1

1
1 −b$−1

1




1
1

ab$n ab2$n−1 1
a$n+1 ab$n 1

 .
This implies that Sv is invariant under type (ii) elements. It is easy to see
that Sv is invariant under type (iii) elements. Finally, we have for a, b ∈ o,

1
1

a$n 1
a$n 1




1 b$−1

1
1 −b$−1

1



=


1 b$−1

1
1 −b$−1

1




1
1

a$n 2ab$n−1 1
a$n 1

 .
This implies that Sv is invariant under type (iv) elements. Applying now
Lemma 3.2.5, we find that v′ is invariant under

1 p−1

1
1 p−1

1

 .
Since Sv is also invariant under this group, so is v. By Lemma 3.2.4, this
implies, finally, v = ηv2 for some v2 ∈ V (n− 2).

ii) Assume that n = 1 and that the subspace of vectors of V fixed by
Sp(4, F ) is trivial. Suppose that θ′v = 0. Then certainly Sθ′v = qθ′v. Arguing
exactly as in the previous case, we get that v is invariant under the group
(3.8). By Lemma 3.2.4 we have v = 0. ut

We now compute the kernels of θ and θ′.



3.2 The Level Raising Operators θ, θ′ and η 103

Corollary 3.2.7 (Injectivity of θ and θ′). Let (π, V ) be a smooth rep-
resentation of GSp(4, F ) such that the center of GSp(4, F ) acts trivially.
If n is a non-negative integer, write θn and θ′n for the θ and θ′ operators
V (n)→ V (n+ 1), respectively. Then for all n ≥ 0,

ker θn =
{
ηl ker θ0 if n = 2l,
ηl ker θ1 if n = 2l + 1,

and

ker θ′n =
{
ηl ker θ′0 if n = 2l,
ηl ker θ′1 if n = 2l + 1.

If θ0 and θ1, or equivalently, θ′0 and θ′1, are injective, then θn and θ′n are
injective for all n ≥ 0.

Proof. First we prove the statement about θ′. We prove this by induction on
n. If n = 0 or n = 1 the statement is clear. Suppose n ≥ 2 and the statement
holds for all k ≤ n. We will prove that it holds for n+1. Write n+1 = 2l+ δ,
where l is a positive integer and δ = 0 or 1. Let v ∈ ker θ′n+1. Then θ′n+1v = η0.
Hence, by Theorem 3.2.6, there exists v2 ∈ V (n− 1) such that v = ηv2. Now
0 = θ′n+1v = θ′n+1ηv2 = ηθ′n−1v2 since θ′ and η commute by Lemma 3.2.3.
Hence, θ′n−1v2 = 0. By the induction hypothesis, v2 ∈ ηl−1 ker θ′δ. Therefore,
v = ηv2 ∈ ηl ker θ′δ. Conversely, suppose v ∈ ηl ker θ′δ. Write v = ηlv′ for
v′ ∈ ker θ′δ. We have θ′n+1v = θ′n+1η

lv′ = ηθ′n−1η
l−1v′, again because θ′ and

η commute by Lemma 3.2.3. By the induction hypothesis, ηl−1v′ ∈ ker θ′n−1.
Hence, θ′n−1η

l−1v′ = 0, so that θ′n+1v = 0. Therefore, ker θ′n+1 = ηl ker θδ, so
that the statement about ker θ′n follows by induction.

To prove the statement about ker θn, write n = 2l+ δ for l a non-negative
integer and δ = 0 or 1. We have

v ∈ ker θn ⇐⇒ θnv = 0
⇐⇒ (π(un+1) ◦ θ′n ◦ π(un))v = 0
⇐⇒ θ′n(π(un)v) = 0

⇐⇒ π(un)v ∈ ηl ker θ′δ
⇐⇒ v ∈ π(un)ηl ker θ′δ
⇐⇒ v ∈ ηlπ(uδ) ker θ′δ
⇐⇒ v ∈ ηlπ(uδ) ker(π(uδ+1) ◦ θδ ◦ π(uδ))

⇐⇒ v ∈ ηl ker θδ.

The statements about the injectivity of θ and θ′ follow from the computations
of their kernels. ut

For future use it will also be useful to observe the following corollary of
Theorem 3.2.6.
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Corollary 3.2.8. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. Let n ≥ 0 be a non-negative integer,
and let v ∈ V (n). Let k ≥ 0 be a non-negative integer, and assume that
Sθ′kv = qθ′kv.

i) Assume that n ≥ 2. Then there exists v2 ∈ V (n− 2) such that ηv2 = v.
ii) Assume that n = 1 and that the subspace of vectors of V fixed by Sp(4, F )

is trivial. Then either v = 0, or θ′v 6= 0 and there exists v2 ∈ V (0), v2 6= 0,
such that θ′v = ηv2.

Proof. i) Assume that n ≥ 2. We prove the claim by induction on k. The
statement is clear if k = 0. Assume the statement hold for k. We will prove
that it holds for k + 1. Suppose that Sθ′k+1v = qθ′k+1v for v ∈ V (n). Since
Sθ′k(θ′v) = qθ′k(θ′v), the induction hypothesis implies that θ′v = ηv1 for
some v1 ∈ V (n− 1). By Theorem 3.2.6, v = ηv2 for some v2 ∈ V (n− 2).

ii) Assume that n = 1 and that the subspace of vectors of V fixed by
Sp(4, F ) is trivial. If k = 0, then Sv = qv, so that W is invariant under
the subgroup (3.8); by Lemma 3.2.4 we have v = 0. Assume k ≥ 1. By i)
applied to the equation Sθ′k−1θ′v = qθ′k−1θ′v we have θ′v = ηv2 for some
v2 ∈ V (n−1) = V (0). If v 6= 0, then θ′v 6= 0 by Theorem 3.2.6. This completes
the proof. ut

Iwahori-Spherical Representations

In this subsection we determine the irreducible, admissible representations
(π, V ) of GSp(4, F ) with trivial central character for which the endomorphisms
θ and θ′ of Vpara are not injective. By Corollary 3.2.7, if (π, V ) is such a
representation, then necessarily V (0) 6= 0 or V (1) 6= 0. Now V (0) is the
space of GSp(4, o) fixed vectors, and V (1) is the space of vectors fixed under
K(p), which is also a parahoric subgroup. It follows that any counterexample
to θ injectivity necessarily contains non-zero fixed vectors under the Iwahori
subgroup

I =


o o o o
p o o o
p p o o
p p p o

 ⊂ GSp(4, o).

It is well known that such Iwahori-spherical representations are exactly the
constituents of the representations parabolically induced from an unramified
character of the Borel subgroup B(F ); see [Bo1]. Table A.13 in Appendix A.8
contains the complete list of all such representations; all the inducing charac-
ters are understood to be unramified. The following theorem determines these
representations and provides information about their paramodular vectors. In
this theorem we mention the Langlands parameter of an Iwahori-spherical,
irreducible, admissible representation π of GSp(4, F ): by this we mean the
admissible representation ϕπ : W ′

F → GSp(4,C) assigned to π by the desider-
ata of the local Langlands conjecture; see 11.3 of [Bo2] and our Sect. 2.4.
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Theorem 3.2.9. Table A.13 contains the complete list of Iwahori-spherical,
irreducible, admissible representations (π, V ) of GSp(4, F ) with trivial central
character. The table also lists the the dimensions of the spaces V (0), V (1), V (2)
and V (3), and under each dimension the eigenvalues of the Atkin–Lehner in-
volution un. These eigenvalues are correct if one assumes that

• in group II, where the central character is χ2σ2, the character χσ is trivial.
• in groups IV, V and VI, where the central character is σ2, the character

σ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and
minus signs in the V (1) and the V (3) column. Finally, the table lists the
conductor a and ε-factor ε(1/2, ϕπ) of the Langlands parameter ϕπ of π.

Proof. By [Bo1], each Iwahori-spherical representation of GSp(4, F ) can be
realized as a subrepresentation of an induced representation χ1×χ2 oσ with
unramified characters χ1, χ2 and σ of F×. In Proposition 5.1.2 we will deter-
mine representatives for the double cosets B(F )\GSp(4, F )/K(pn), for each
n ≥ 0. For n = 0, 1, 2, 3 the number of elements of this double coset space is
1, 2, 4, 6, respectively, and the general formula is [(n + 2)2/4]. These are also
the dimensions of the spaces of K(pn) invariant vectors in χ1 × χ2 o σ, since
such vectors can be given as functions in the induced model taking arbitrary
values on the double coset representatives. This explains the dimensions for
group I representations in Table A.13. The Atkin–Lehner eigenvalues can be
verified by direct calculations in the induced model.

If the induced representation χ1×χ2 o σ is reducible, then one has to de-
termine how the paramodular vectors are distributed among the irreducible
constituents. As an example, we treat group II representations. The full in-
duced representation is ν1/2χ× ν−1/2χo σ with unramified characters χ and
σ such that χ2 6= ν±1 and χ 6= ν±3/2; see Table A.1. The IIb constituent is
given as the Siegel induced representation χ1GL(2) o σ. Similarly as above,
the dimension of the space of K(pn) invariant vectors for IIb is given by the
number of elements of P (F )\GSp(4, F )/K(pn). By Proposition 5.1.2, this car-
dinality is [(n+2)/2]. The dimensions for IIa are then obtained by subtracting
the IIb dimensions from the dimensions [(n+ 2)2/4] for the full induced rep-
resentation. Similarly, the Atkin–Lehner eigenvalues for IIb can be found by
direct calculation, and together with the eigenvalues for the full induced rep-
resentation determine the eigenvalues for IIa.

The dimensions and eigenvalues for group III representations can be
found in a similar way, using the fact that the number of elements of
Q(F )\GSp(4, F )/K(pn) is n+ 1; see Proposition 5.1.2.

For group IV representations we use the fact that IVd is one-dimensional
and observe table (2.9). The dimensions for the Siegel induced ν3/21GL(2) o
ν−3/2σ are [(n+2)/2], as above. Consequently, the dimensions for IVb are one
less. The dimensions for the Klingen induced ν2 o ν−1σ1GSp(2) are n+1, and
the dimensions for IVc are one less. Subtracting everything from the dimen-
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sions [(n + 2)2/4] for the full induced representation, we get the dimensions
for IVa.

In Lemma 5.5.7 below we will prove that the dimensions for the unramified
representation of type Vd are 1, 0, 1, 0, . . .. Using this information and table
(2.10), which shows how the full induced representation decomposes, we can
determine all the dimensions for group V representations.

Finally, for group VI, it is easiest to use table (2.11) and the fact, to be
proved in Theorem 3.4.3 below, that VIb has no paramodular vectors. ut

Returning to the problem of the injectivity of θ and θ′, there is an obvious
counterexample to θ and θ′ injectivity in Table A.13, namely the representa-
tion L(νξ, ξ o ν−1/2σ) of type Vd, where σ and ξ are unramified quadratic
characters and ξ is non-trivial. Note that

L(νξ, ξ o ν−1/2σ) = L(νξ, ξ o ν−1/2ξσ), (3.13)

i.e., the Vd type representation is invariant under twisting with ξ. This follows
from table (2.10), which shows that L(νξ, ξoν−1/2σ) can be characterized as
the common constituent of ν1/2ξ1GL(2) o ν−1/2σ and ν1/2ξ1GL(2) o ν−1/2ξσ.
Hence there is only one unramified representation of type Vd.

Corollary 3.2.10. Let (π, V ) be an irreducible, admissible representation of
GSp(4, F ) for which the center acts trivially. Assume that π is different from
the Vd type representation L(νξ, ξo ν−1/2σ) with unramified, quadratic char-
acters ξ 6= 1F× and σ. Then the θ and θ′ operators on each of the spaces V (n)
are injective.

Proof. In view of Corollary 3.2.7, we have to show that θ0 : V (0) → V (1)
and θ1 : V (1) → V (2) are injective. By Theorem 3.2.6 ii), θ1 is injective for
any irreducible π. It remains to show that θ0 is injective for any irreducible
representation other than Vd with non-zero GSp(4, o) fixed vectors. These
are the representations of type I, IIb, IIIb, IVd and VId. In each case the
verification is easily accomplished by realizing π as a subrepresentation of an
appropriate full induced representation χ1×χ2oσ with unramified characters
χ1, χ2 and σ. ut

It is worth noting that the last result implies that with the one exception
of the Vd type representation, the dimensions of the spaces V (n) are non-
decreasing, even though V (n) is not a subspace of V (n+ 1).

To close this section, we note that several of the themes of this work are
already present in Table A.13. Namely, we observe that, with the exception
of the VIb type representations,

• the conductor of the local parameter coincides with the minimal paramod-
ular level;

• the dimension of V (n) at the minimal level is 1;
• the (unique) Atkin–Lehner eigenvalue at the minimal level coincides with

ε(1/2, ϕπ).
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As for VIb, this representation shares an L-parameter with VIa. All the other
representations in this table have pairwise distinct L-parameters; see Sect.
2.4. Hence, the above statements are true without exception if read at the
level of L-packets. In this work we prove statements similar to the above for
each irreducible, admissible representation of GSp(4, F ) with trivial central
character.

3.3 Level Lowering Operators

In this section (π, V ) is a smooth representation of GSp(4, F ) for which the
center acts trivially. By its definition in Sect. 3.2, the level raising operator
θ′ : V (n) → V (n + 1) is nothing but the natural summation or “trace”
operator from K(pn)- to K(pn+1)-invariant vectors. In the present section we
study trace operators in the other direction, from V (n) to V (n − 1). Our
goal is to give explicit formulas for these level lowering operators, which will
be used in later calculations involving Hecke operators. For each operator we
study, the formulas for n = 1 turn out to be different from the formulas for
n ≥ 2.

Some Coset Decompositions and Volumes

We start with some useful coset decompositions. The following lemma is fun-
damental.

Lemma 3.3.1. Let n be a non-negative integer. Then there is a disjoint de-
composition

K(pn) =
⊔

u∈o/pn


1 u$−n

1
1

1

Kl(pn)

t
⊔

v∈o/pn−1

tn


1 v$−n+1

1
1

1

Kl(pn). (3.14)

Here, tn is the element defined in (2.3). (If n = 0, the second union is not
present and the first union is Kl(pn) = K(pn) = GSp(4, o).)

Proof. We will assume n ≥ 1, since the assertion is trivial for n = 0. It is
easy to see that the cosets of the first type are pairwise disjoint, and that the
cosets of the second type are also pairwise disjoint. Moreover, the lower right
coefficient of an element in a coset of the first type is a unit, while the lower
right coefficient of an element in a coset of the second type lies in p. Hence
all the cosets in (3.14) are indeed disjoint.
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Next, we prove that K(pn) is contained in the complete union. Let k ∈
K(pn), and write

k =


a1 a2 b1 b2$

−n

a3$
n a4 b3 b4

c1$
n c2 d1 d2

c3$
n c4$

n d3$
n d4

 ,
with ai, bi, ci, di ∈ o for 1 ≤ i ≤ 4. If d4 ∈ o×, then

1 −b2d−1
4 $−n

1
1

1

 k ∈ Kl(pn),

because the upper-right entry of this matrix is 0. This implies that k is con-
tained in one of the sets from the first union. Assume d4 is not a unit. We
have

det(k) = (a1d4 − b2c3)(a4d1 − b3c2) + a$n

for some a ∈ o. Since d4 /∈ o× and det(k) ∈ o× by the definition of the
paramodular group, we obtain that b2 ∈ o×. We have

t−1
n k =


c3 c4 d3 d4$

−n

a3$
n a4 b3 b4

c1$
n c2 d1 d2

−a1$
n −a2$

n −b1$n −b2

 ,
and hence 

1 d4b
−1
2 $−n

1
1

1

 t−1
n k ∈ Kl(pn).

Since v(d4) > 0, we see that k is contained in one of the sets from the second
union. This completes the proof. ut

Lemma 3.3.2. Let n ≥ 2. There is a disjoint decomposition

Kl(pn−1) =
⊔

λ,µ,κ∈o/p


1

λ$n−1 1
µ$n−1 1
κ$n−1 µ$n−1 −λ$n−1 1

Kl(pn).

Proof. This follows immediately from the Iwahori factorization (2.7) for the
Klingen congruence subgroup. ut

Lemma 3.3.3. If the Haar measure on GSp(4, F ) is normalized so that
vol(GSp(4, o)) = 1, then
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vol(Kl(pn)) =
1

(1 + q−1)(1 + q−2)q3n
, vol(K(pn)) =

1
(1 + q−2)q2n

for any n ≥ 1.

Proof. Let Q be the Klingen parabolic subgroup. By the Bruhat decomposi-
tion we have over any field k

GSp(4, k) = QtQs1


1 ∗

1
1 ∗

1

tQs1s2


1 ∗
1 ∗ ∗

1
1

tQs1s2s1


1 ∗ ∗ ∗
1 ∗

1 ∗
1

 . (3.15)

If k is the finite field with q elements, it follows that #(GSp(4, k)/Q) =
1 + q + q2 + q3. This is the index of Kl(p) in K = GSp(4, o), hence

vol(Kl(p)) =
1

(1 + q)(1 + q2)
.

Using Lemma 3.3.2, this proves the formula for vol(Kl(pn)). The formula for
vol(K(pn)) is then easily obtained from Lemma 3.3.1. ut

Lemma 3.3.4. Let n ≥ 2. Define

J = K(pn−1) ∩K(pn).

Then there is a disjoint decomposition

K(pn−1) =
⊔

λ,µ,κ∈o/p


1

λ$n−1 1
µ$n−1 1
κ$n−1 µ$n−1 −λ$n−1 1

J

t
⊔

λ,µ∈o/p

tn−1


1

λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

J.
(For the definition of tn−1 see (2.3).)

Proof. It follows from Lemmas 3.2.1 and 3.3.3 that

vol(J) =
1

(1 + q)(1 + q−2)q2n
.

Another application of Lemma 3.3.3 shows that the index of J in K(pn−1)
is q3 + q2. Hence we need only show that the cosets given in the lemma are
pairwise disjoint. This is a straightforward verification. ut

Finally, we shall need the following coset decomposition involving Kl(p), the
Klingen congruence subgroup of level p, which is a parahoric subgroup.
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Lemma 3.3.5. We have the disjoint decomposition

GSp(4, o) = s1Kl(p) t
⊔

x∈o/p


1 x

1 x
1

1

 s1s2s1Kl(p)

t
⊔

x,y∈o/p


1
x 1 y

1
−x 1

 s2s1Kl(p) t
⊔

x,y,z∈o/p


1
x 1
y 1
z y −x 1

Kl(p).

Proof. Let Q be the Klingen parabolic subgroup. By the Bruhat decomposi-
tion we have

GSp(4, k) = Qt


1 ∗

1
1 ∗

1

 s1Qt


1 ∗
1 ∗ ∗

1
1

 s2s1Qt


1 ∗ ∗ ∗
1 ∗

1 ∗
1

 s1s2s1Q (3.16)

over any field k. Multiplying from the left with s1s2s1 gives

GSp(4, k) = s1s2s1Qt


1

1
∗ 1
∗ 1

 s1Qt


1
∗ 1 ∗

1
∗ 1

 s2s1Qt


1
∗ 1
∗ 1
∗ ∗ ∗ 1

Q. (3.17)

Taking for k the residue field o/p, it follows that

GSp(4, o) = s1s2s1Kl(p) t
⊔

x∈o/p


1

1
x 1
x 1

 s1Kl(p)

t
⊔

x,y∈o/p


1
x 1 y

1
−x 1

 s2s1Kl(p) t
⊔

x,y,z∈o/p


1
x 1
y 1
z y −x 1

Kl(p). (3.18)

Splitting the second union into x ∈ o× and x = 0, we obtain the desired
decomposition after some straightforward manipulations involving the “useful
identity” (2.8). ut

The Operator δ1

Now let (π, V ) be a smooth representation of GSp(4, F ) for which the center
acts trivially. We shall define level lowering operators δ1, δ2 and δ3, starting
with the natural summation operator δ1 : V (n)→ V (n− 1) given by
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δ1v =
∑

g∈K(pn−1)/(K(pn−1)∩K(pn))

π(g)v. (3.19)

As mentioned above, explicit formulas for δ1 look different for n = 1 and for
n ≥ 2.

Lemma 3.3.6. The level lowering operator δ1 : V (1)→ V (0) has the explicit
formula

δ1v = π(s1)v +
∑
x∈o/p

π(


1 x

1 x
1

1

 s1s2s1)v

+
∑

x,y∈o/p

π(


1
x 1 y

1
−x 1

 s2s1)v +
∑

x,y,z∈o/p

π(


1
x 1
y 1
z y −x 1

)v. (3.20)

Alternatively,

δ1v = v +
∑

x,y∈o/p

π(


1 y

1 x y
1

1




1
$
$−1

1

 s1)v

+
∑
x∈o/p

π(


1 x

1
1 −x

1

 s1)v +
∑

x,y,z∈o/p

π(


1 x y z

1 y
1 −x

1



$

1
1
$−1

)v (3.21)

for v ∈ V (1).

Proof. By Lemma 3.3.5, the formula given in (3.20) is in fact the formula for
the natural trace operator V Kl(p) → V (0). But GSp(4, o) ∩ K(p) = Kl(p),
hence it is also the formula for δ1 : V (1) → V (0). The alternative for-
mula follows from (3.16), using the fact that v ∈ V (1) is invariant under
diag($−1, 1, 1, $)s1s2s1. ut

Lemma 3.3.7. Let n ≥ 2. Let v ∈ V (n). Then:

δ1v =
∑

λ,µ,κ∈o/p

π(


1

λ$n−1 1
µ$n−1 1
κ$n−1 µ$n−1 −λ$n−1 1

)v

+
∑

λ,µ∈o/p

π(


1 λ µ

1 µ
1 −λ

1

 η−1)v. (3.22)
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Alternatively,

δ1v =
∑

λ,µ,κ∈o/p

π(


1 λ µ κ$−(n−1)

1 µ
1 −λ

1

 η−1)v

+
∑

λ,µ∈o/p

π(


1

λ$n−1 1
µ$n−1 1

µ$n−1 −λ$n−1 1

)v. (3.23)

Here η is as in (3.5).

Proof. By Lemma 3.3.4,

δ1v =
∑

λ,µ,κ∈o/p

π(


1

λ$n−1 1
µ$n−1 1
κ$n−1 µ$n−1 −λ$n−1 1

)v

+
∑

λ,µ∈o/p

π(tn−1)π(


1

λ$n−1

µ$n−1 1
µ$n−1 −λ$n−1 1

)v

=
∑

λ,µ,κ∈o/p

π(


1

λ$n−1 1
µ$n−1 1
κ$n−1 µ$n−1 −λ$n−1 1

)v

+
∑

λ,µ∈o/p

π(


1 µ λ

1 λ
1 −µ

1

)π(tn−1)v.

Since tn−1 = η−1tn, we obtain (3.22). The second formula follows by applying
tn−1 to the first one. ut

The Operator δ2

We next study the dual operator δ2 := un−1 ◦ δ1 ◦ un, which is also a linear
operator from V (n) to V (n− 1). We claim that

δ2v =
∑

g∈K(pn−1)/J ′

π(g)


$
$

1
1

 v,
where
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J ′ = K(pn−1) ∩


$
$

1
1

K(pn)


$−1

$−1

1
1

 .
Indeed, this follows easily from the facts that

u−1
n−1K(pn)un−1 =


$
$

1
1

K(pn)


$−1

$−1

1
1


and that 

$
$

1
1

u−1
n = u−1

n−1.

Lemma 3.3.8. The operator δ2 : V (1)→ V (0) has the explicit formula

δ2v = η−1θ′u1v +
∑

x,y,z∈o/p

π(


1 y
x 1 z y

1
−x 1



$
$

1
1

)v

+
∑

x,y∈o/p

π(


1 x

1
y 1 −x
y 1



$

1
$

1

)v.

Here, u1 is the Atkin–Lehner involution at level p. An explicit formula for the
level raising operator θ′ is given in Lemma 3.2.2.

Proof. Dualizing the formula (3.20), we obtain

δ2v =
∑

x,y,z∈o/p

π(


1 y
x 1 z y

1
−x 1



$
$

1
1

)v

+
∑

x,y∈o/p

π(


1
x 1

1
y −x 1

 s1

$

1
$

1

)v

+
∑
x∈o/p

π(


1

1
x 1
x 1



$

1
$

1

)v + π(s1


$
$

1
1

)v.
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Some standard manipulations show that

∑
y∈o/p

∑
x∈(o/p)×

π(


1
x 1

1
y −x 1

 s1

$

1
$

1

)v

=
∑
y∈o/p

∑
x∈(o/p)×

π(


1 x

1
y 1 −x
y 1



$

1
$

1

)v,

and that

∑
y∈(o/p)×

π(


1

1
1

y 1

 s1

$

1
$

1

)v =
∑

y∈(o/p)×

π(


1 y

1
1

1

 s1

$
$

1
1

)v.

Using Lemma 3.2.2 ii) and collecting all the pieces, the assertion follows easily.
ut

Lemma 3.3.9. For n ≥ 2 the operator δ2 : V (n)→ V (n− 1) has the explicit
formula

δ2v =
∑

λ,µ,κ∈o/p

π(


1

λ$n−1 1
1

−λ$n−1 1




1 µ
1 κ µ

1
1



$
$

1
1

)v

+
∑

λ,µ∈o/p

π(


1

1
λ$n−1 1

λ$n−1 1




1 µ
1

1 −µ
1



$

1
$

1

)v. (3.24)

Proof. This follows by conjugating the elements in Lemma 3.3.4 with un−1.
ut

The Operator δ3

We define yet another operator δ3 : V (n)→ V (n− 1) by

δ3v =
∑

g∈K(pn−1)/(K(pn−1)∩η−1K(pn)η)

π(gη−1)v.

Lemma 3.3.10. The operator δ3 : V (1)→ V (0) has the explicit formula

δ3v = η−1θu1v +
∑

x,y,z∈o/p

π(


1 x y z

1 y
1 −x

1

 η−1)v
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+
∑

x,y∈o/p

π(s1s2s1


1 x y

1 y
1 −x

1

 η−1)v. (3.25)

Here, u1 is the Atkin–Lehner involution at level p. An explicit formula for the
level raising operator θ is given in Lemma 3.2.2.

Proof. We have

η−1K(p)η = t0K(p)t−1
0 =


o p p p
o o o p
o o o p

p−1 o o o

 .
Hence J := GSp(4, o) ∩ η−1K(p)η is the s1s2s1s2 conjugate of Kl(p). Conju-
gating (3.18) with the longest Weyl group element, we obtain

GSp(4, o) = s1s2s1J t
⊔

x∈o/p


1 x

1 x
1

1

 s1J

t
⊔

x,y∈o/p


1 x

1
y 1 −x

1

 s2s1J t ⊔
x,y,z∈o/p


1 x y z

1 y
1 −x

1

J.
It follows that

δ3v = π(s1s2s1η−1)v +
∑
x∈o/p

π(


1 x

1 x
1

1

 s1η−1)v

+
∑

x,y∈o/p

π(


1 x

1
y 1 −x

1

 s2s1η−1)v +
∑

x,y,z∈o/p

π(


1 x y z

1 y
1 −x

1

 η−1)v.

The first term is equal to π(t1)v = v. Standard manipulations show that

∑
x∈(o/p)×

∑
y∈o/p

π(


1 x

1
y 1 −x

1

 s2s1η−1)v

=
∑

x∈(o/p)×

∑
y∈o/p

π(s1s2s1


1 y x

1 x
1 −y

1

 η−1)v
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and that

∑
y∈o/p

π(


1

1
y 1

1

 s2s1η−1)v = π(s1)v +
∑

y∈(o/p)×

π(s1η−1


1 y$−2

1
1

1

)v.

Furthermore,

∑
x∈(o/p)×

π(


1 x

1 x
1

1

 s1η−1)v =
∑

x∈(o/p)×

π(s1s2s1


1 x

1
1 −x

1

 η−1)v.

Hence, using Lemma 3.2.2 ii),

δ3v = π(s1η−1)θ′v

+
∑

x,y∈o/p

π(s1s2s1


1 x y

1 y
1 −x

1

 η−1)v +
∑

x,y,z∈o/p

π(


1 x y z

1 y
1 −x

1

 η−1)v.

Since

π(s1η−1)θ′v = π(s1η−1)θ′u2
1v = π(s1η−1u2)θu1v = π(η−1t2)θu1v,

the assertion follows. ut

Lemma 3.3.11. For n ≥ 2 the operator δ3 : V (n)→ V (n−1) has the explicit
formula

δ3v =
∑

λ,µ,κ∈o/p

π(


1 µ

1
1 −µ

1




1 λ κ$−n+1

1 λ
1

1

 η−1)v

+
∑

λ,µ∈o/p

π(tn−1


1 µ

1
1 −µ

1




1 λ
1 λ

1
1

 η−1)v. (3.26)

Proof. Note that η−1K(pn)η = tn−1K(pn)t−1
n−1. Conjugating the representa-

tives given in Lemma 3.3.4 with tn−1, we obtain the asserted formula. ut

Relations Between Level Lowering and Level Raising Operators

Lemma 3.3.12. Let n ≥ 0. If v ∈ V (n), then

δ1ηv = q2θ′v.
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Proof. Using Lemma 3.3.7, we compute

(δ1η)v =
∑

λ,µ,κ∈o/p

π(


1 λ µ κ$−(n+1)

1 µ
1 −λ

1

 η−1)π(η)v

+
∑

λ,µ∈o/p

π(


1

λ$n+1 1
µ$n+1 1

µ$n+1 −λ$n+1 1

)π(η)v

=
∑

λ,µ,κ∈o/p

π(


1 λ µ κ$−(n+1)

1 µ
1 −λ

1

)v

+ π(η)
∑

λ,µ∈o/p

π(


1

λ$n 1
µ$n 1

µ$n −λ$n 1

)v

= q2
∑
κ∈o/p

π(


1 κ$−(n+1)

1
1

1

)v + q2π(η)v.

The last expression equals q2θ′v by Lemma 3.2.2. ut

3.4 Paramodular Vectors and P3-Theory

As we mentioned in Sect. 2.5, P3-theory is a useful tool for the investiga-
tion of paramodular vectors. In this section, using the linear independence of
paramodular vectors and properties of level raising operators, we will prove
that if (π, V ) is any smooth representation of GSp(4, F ) such that the center
of GSp(4, F ) acts trivially, and the subspace of vectors of V fixed by Sp(4, F )
is trivial, then the restriction of the projection map p : V → VZJ to V (n)
is injective for all n. As a corollary we will deduce that some representations
do not admit non-zero paramodular vectors. Thus, we will prove that, for
example, nongeneric, supercuspidal, irreducible, admissible representations of
GSp(4, F ) with trivial central character have no non-zero paramodular vec-
tors.

To start, let (π, V ) be a smooth representation of GSp(4, F ) such that the
center of GSp(4, F ) acts trivially. It is easy to see that if n is a non-negative
integer and W is in V (n), then p(W ) = 0 if and only if
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∫
p−(n+k)/p−n

π(


1 x

1
1

1

)v dx = 0

for some non-negative integer k. The next lemma analyzes this integral.

Lemma 3.4.1. Let (π, V ) be a smooth representation of GSp(4, F ) such that
the center of GSp(4, F ) acts trivially. Let n ≥ 0 and k ≥ 0 be non-negative
integers and v ∈ V (n). Then

∫
p−(n+k)/p−n

π(


1 x

1
1

1

)v dx = θ′kv + ηv′1 + ηv′2 (3.27)

where v′1 ∈ V (n+ k− 2) and v′2 ∈ V (n+ k− 1). Here, v′1 = 0 if n+ k− 2 < 0
and v′2 = 0 if n+ k − 1 < 0.

Proof. We prove this assertion by induction on k. If k = 0, then the assertion
is true with v′1 = v′2 = 0. Assume it is true for k, so that (3.27) holds with
v′1 ∈ V (n+ k − 2) and v′2 ∈ V (n+ k − 1); we will prove it for k + 1. We have
by (3.7)

∫
p−(n+k+1)/p−n

π(


1 y

1
1

1

)v dy

=
∫

p−(n+k+1)/p−(n+k)

π(


1 y

1
1

1

)(
∫

π−(n+k)/p−n

π(


1 x

1
1

1

)v dx) dy

=
∫

p−(n+k+1)/p−(n+k)

π(


1 y

1
1

1

)(θ′kv + ηv′1 + ηv′2) dy

= (θ′(θ′kv)− η(θ′kv)) + (θ′(ηv′1)− η(ηv′1)) + qηv′2

= θ′k+1v + η(θ′v′1 + qv′2) + η(−θ′kv − ηv′1).

As θ′v′1 + qv′2 ∈ V (n+ (k+ 1)− 2) and −θ′kv− ηv′1 ∈ V (n+ (k+ 1)− 1), the
assertion follows by induction. ut

Using the last lemma, we can prove the important fact that non-zero
paramodular vectors have non-zero projections to VZJ . In fact, we can de-
termine the kernel of the restriction of the projection to Vpara.
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Proposition 3.4.2. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. Assume that the subspace of vectors
of V fixed by Sp(4, F ) is trivial. Let p : V → VZJ be the projection map. If
v ∈ V (n) for some non-negative integer n ≥ 0 and p(v) = 0, then v = 0. More
generally, if v ∈ Vpara and p(v) = 0, then v is a linear combination of vectors
of the form

qw − θ′w + ηw, (3.28)

where w ∈ V (m) for some non-negative integer m ≥ 0.

Proof. To prove the first assertion of the lemma, let n ≥ 0 be a non-negative
integer and v ∈ V (n), and assume p(v) = 0. We need to prove v = 0. Since
p(v) = 0, there exists a non-negative integer k ≥ 0 such that

∫
p−(n+k)/p−n

π(


1 x

1
1

1

)v dx = 0. (3.29)

Using induction on k, we will prove that if (3.29) holds, then v = 0. If k = 0,
this is clear. Suppose it holds for k; we will prove that it holds for k + 1. By
Lemma 3.4.1, there exist v′1 ∈ V (n+ k − 2) and v′2 ∈ V (n+ k − 1) such that

∫
p−(n+k)/p−n

π(


1 x

1
1

1

)v dx = θ′kv + ηv′1 + ηv′2. (3.30)

As in the proof of Lemma 3.4.1,

∫
p−(n+k+1)/p−n

π(


1 y

1
1

1

)v dy

= θ′k+1v︸ ︷︷ ︸
∈V (n+k+1)

+ η(θ′v′1 + qv′2)︸ ︷︷ ︸
∈V (n+k+1)

+ η(−θ′kv − ηv′1)︸ ︷︷ ︸
∈V (n+k+2)

.

By assumption, this is zero. By Theorem 3.1.3, we have

θ′k+1v + ηθ′v′1 + qηv′2 = 0,
η(θ′kv + ηv′1) = 0.

Since η is invertible, the second equation implies that θ′kv = −ηv′1. Substi-
tuting this into the first equation, we obtain qηv′2 = 0. This implies v′2 = 0.
Since θ′kv = −ηv′1 and v′2 = 0, by (3.30),
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∫
p−(n+k)/p−n

π(


1 x

1
1

1

)v dx = 0.

By the induction hypothesis, this implies v = 0.
To prove the second assertion of the proposition we require a new concept.

If v ∈ Vpara, then v can be written in the form v = v1 + · · · + vt, where
vi ∈ V (ni), vi is non-zero, and 0 ≤ n1 < · · · < nt. By Theorem 3.1.3, this
representation is unique. We define the length of v to be l(v) = nt−n1; if t = 1,
then this is defined to be zero. Suppose that v ∈ Vpara and p(v) = 0. We will
prove that v is a linear combination of elements of the form (3.28) by induction
on l(v). If l(v) = 0, then this follows from the last paragraph. Suppose that if
v ∈ Vpara, p(v) = 0 and l(v) ≤ m, then v is a linear combination of elements of
the form (3.28). We will prove that if v ∈ Vpara, p(v) = 0 and l(v) = m+1, then
v is a linear combination of elements of the form (3.28). Write v = v1 + · · ·+vt
as in the definition of length. Set

v′ =
∫

p−(n1+1)/p−n1

π(


1 x

1
1

1

)v dx.

Then p(v′) = 0. Also, by (3.7),

v′ =
∫

p−(n1+1)/p−n1

π(


1 x

1
1

1

)v dx+ qv2 + · · ·+ qvt

= θ′v1 − ηv1 + qv2 + · · ·+ qvt.

This formula implies that l(v′) ≤ nt − (n1 + 1) = l(v) − 1 = m. By the
induction hypothesis, v′ is the sum of elements of the form (3.28). Since

v = q−1(v′ + qv1 − θ′v1 + ηv1),

it follows that v is a linear combination of elements of the form (3.28). ut

The final result of this section uses Proposition 3.4.2 to prove that some
representations, including all non-generic, supercuspidal, irreducible, admis-
sible representations of GSp(4, F ) with trivial central character, are not
paramodular. The idea of the proof is to consider the projections of paramod-
ular vectors into the P3-filtration of VZJ .

Theorem 3.4.3. The following non-generic, irreducible, admissible represen-
tations of GSp(4, F ) with trivial central character do not admit non-zero
paramodular vectors of any level:
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representation condition on defining data

II b χ1GL(2) o σ χσ ramified

III b χo σ1GSp(2) σ ramified

b L(ν2, ν−1σStGSp(2)) σ ramified

IV c L(ν3/2StGL(2), ν
−3/2σ) σ ramified

d σ1GSp(4) σ ramified

b L(ν1/2ξStGL(2), ν
−1/2σ) σ ramified

V c L(ν1/2ξStGL(2), ξν
−1/2σ) ξσ ramified

d L(νξ, ξ o ν−1/2σ) σ or ξ ramified

b τ(T, ν−1/2σ) none

VI c L(ν1/2StGL(2), ν
−1/2σ) σ ramified

d L(ν, 1F× o ν−1/2σ) σ ramified

VIII b τ(T, π) none

IX b L(νξ, ν−1/2π) none

XI b L(ν1/2π, ν−1/2σ) σ ramified

π supercuspidal non-generic

Proof. Let (π, V ) be one of the representations in the table in the statement
of the theorem. Let n ≥ 0 be a non-negative integer, and let v ∈ V (n). We
need to prove v = 0. Let p : V → VZJ = V/V (ZJ) be the projection. Let

0 = V2 ⊂ V1 ⊂ V0 = VZJ

be the filtration of P3-subspaces from Theorem 2.5.3. Note that, as stated
in Theorem 2.5.3, V2 = 0 because π is not generic. By Proposition 3.4.2,
it suffices to prove that p(v) = 0. The vector p(v) is invariant under P3(o).
Using the assumptions on π from the table above, and the tables A.6 and
A.5, which list the semi-simplifications of V1/V2 and V0/V1, one can verify
that each of the non-zero irreducible P3-subquotients of VZJ are either of the
form τP3

GL(1)(χ) for χ a ramified character of F× or of the form τP3
GL(2)(ρ) for

ρ a ramified, irreducible, admissible representation of GL(2, F ). By Lemma
3.4.4 below we have p(v) = 0. ut

Lemma 3.4.4. Let χ be a character of F×, and let ρ be an irreducible, ad-
missible representation of GL(2, F ). If τP3

GL(1)(χ) contains a non-zero vector

fixed by P3(o) then χ is unramified, and if τP3
GL(2)(ρ) contains a non-zero vector

fixed by P3(o) then ρ is unramified.
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Proof. The assertion about ρP3
GL(2)(ρ) follows immediately from the definition

of τP3
GL(2)(ρ). Suppose τP3

GL(1)(χ) contains a non-zero vector f fixed by P3(o).
Let p ∈ P3 be such that f(p) 6= 0. We can write

p =

1 z
1 y

1

1 x
1

1

a 1
1

1
b

1

k1 k2

k3 k4

1


for some x, y, z ∈ F , a, b ∈ F× and

[
k1 k2
k3 k4

]
∈ GL(2, o). Let u ∈ o×. Then

p

u 1
1

 =

1 z
1 y

1

1 x
1

1

au 1
1

1
b

1

 k1 u−1k2

uk3 k4

1

 .
Hence,

f(p) = f(p

u 1
1

),

ψ(y)χ(a)f(

1
b

1

) = ψ(y)χ(au)f(

1
b

1

).

Since this is non-zero for some b, we obtain χ(u) = 1. ut
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Zeta Integrals

As we saw in the first chapter, if (π, V ) is a generic, irreducible, admissible
representation of GSp(4, F ) with trivial central character, then a theory of
zeta integrals for π exists. This theory is used to define the L- and ε-factors
for π. In this chapter we consider zeta integrals of paramodular vectors and
prove central results required to fully exploit zeta integrals as a tool for in-
vestigating paramodular vectors. A major obstruction is the existence of de-
generate vectors, i.e., paramodular vectors with vanishing zeta integrals; this
phenomenon does not occur in the GL(2) theory. We prove the important
η Principle, which fully accounts for degenerate vectors via the level raising
operator η. The η Principle is proved using P3-theory. To apply P3-theory,
we will prove a result that relates poles of the L-functions of generic repre-
sentations to certain irreducible subquotients in the associated P3-filtration;
this is a general result that has nothing to do with paramodular vectors. In
the last section of this chapter we also use P3-theory to prove the existence of
non-zero paramodular vectors in any generic representation. These results are
proved after some basic observations about the zeta integrals of paramodular
vectors.

4.1 Paramodular Vectors and Zeta Integrals

In this section we work with a generic, irreducible, admissible representation
(π, V ) of GSp(4, F ) with trivial central character, where V = W(π, ψc1,c2)
is the Whittaker model of π with respect to ψc1,c2 . As usual when working
with Whittaker models, we shall make the following assumptions: i) ψ has
conductor o; ii) c1, c2 ∈ o×.

First Observations

We begin with some lemmas that show that the zeta integrals of paramodular
vectors simplify considerably.
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Lemma 4.1.1. Assume that W ∈ W(π, ψc1,c2) is right invariant under the
following elements:

1
1
o 1

1

 ,


1
1 p

1
1

 ,


1 o
1 o

1
1

 . (4.1)

Then the zeta integral of W as defined in (2.54) is given by the simplified
formula

Z(s,W ) =
∫
F×

W (


a
a

1
1

)|a|s−3/2 d×a. (4.2)

In particular, the zeta integral of any paramodular vector W is given by (4.2).

Proof. Write Z(s,W ) = Z1 + Z2 with Z1 =
∫
F×

∫
o
. . . dx d×a and Z2 =∫

F×

∫
F\o . . . dx d

×a. By the invariance properties of W we can omit the x–
variable in Z1, so that Z1 is equal to the right side of (4.2). We shall show
that Z2 vanishes. Using the fundamental identity (2.8) and the invariance
properties of W , we find

Z2 =
∫
F×

∫
F\o

W (


a
ax−1

x
1

 s2)ψ(c2ax−1)|a|s−3/2 dx d×a. (4.3)

But now, for any y ∈ o,

W (


a
ax−1

x
1

 s2) = W (


a
ax−1

x
1

 s2


1 y
1 y

1
1

)

= ψ(c1xy)W (


a
ax−1

x
1

 s2).
Since x /∈ o and the character ψ(c1 · ) has conductor o, this implies that the
integrand in (4.3) is zero. ut
Lemma 4.1.2. Assume that W ∈ W(π, ψc1,c2) is K(pn)-invariant for some
n ≥ 0. Then

W (


a
b
cb−1

ca−1

) = 0 if v(a) < v(b) or 2v(b) < v(c).

Here, v is the normalized valuation on F .
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Proof. The argument is similar to the one at the end of the proof of Lemma
4.1.1. For each x, y ∈ o we have

W (


a
b
cb−1

ca−1

) = W (


a
b
cb−1

ca−1




1 x xy
1 y

1 −x
1

)

= ψ(c1ab−1x)ψ(c2b2c−1y)W (


a
b
cb−1

ca−1

).

Since ψ(c1 · ) and ψ(c2 · ) have conductor o, the assertion follows. ut

Proposition 4.1.3. Let n ≥ 0 be a non-negative integer. Then, for any
paramodular vector W ∈ V (n), we have

Z(s, θW ) = q−s+3/2Z(s,W ),
Z(s, θ′W ) = qZ(s,W ),
Z(s, ηW ) = 0.

Proof. These are easy computations using the previous two lemmas and the
explicit formulas from Lemma 3.2.2. ut

If W ∈ V (n) is a paramodular vector for which Z(s,W ) = 0, then we
say that W is degenerate. Hence the η operator produces degenerate vectors.
The η Principle, which we shall prove in Sect. 4.3, is the converse of this
statement: If W ∈ V (n) is non-zero and degenerate, then n ≥ 2 and there
exists a W1 ∈ V (n− 2) such that W = ηW1.

Zeta Polynomials

The elements W of V (n) are such that

Z(s,W ) =
∞∑
k=0

a(k)Xk, X = q−s,

the point being that no negative k occur. This follows immediately from Lem-
mas 4.1.1 and 4.1.2. The formula for a(k) is

a(k) = W (


$k

$k

1
1

)q3k/2(1− q−1). (4.4)
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Proposition 4.1.4 (Zeta Polynomials). Let (π, V ) be a generic, irre-
ducible, admissible representation of GSp(4, F ) with trivial central character,
where V =W(π, ψc1,c2). Write the ε-factor of π as ε(s, π) = εq−N(s−1/2) with
an integer N and a sign ε ∈ {±1}, as in Proposition 2.6.6. Let n ≥ 0 be a non-
negative integer. Then we have the following statements for any W ∈ V (n).

i) There exists a polynomial PW (X) ∈ C[X] such that

Z(s,W )
L(s, π)

= PW (q−s)

We call PW the zeta polynomial of W .
ii) The Atkin–Lehner involution π(un) has the following effect on zeta poly-

nomials,
Pπ(un)W (X) = εq(n−N)/2Xn−NPW (q−1X−1).

iii) The degree of PW ∈ C[X] is at most n−N (if n−N < 0 this means that
PW = 0).

iv) The θ and θ′ operators have the following effect on zeta polynomials,

PθW (X) = q3/2X PW (X), Pθ′W (X) = qPW (X).

Proof. i) follows from the three facts that a) Z(s,W ) is a power series in
q−s, b) Z(s,W )/L(s, π) ∈ C[qs, q−s], and c) L(s, π) = 1/Q(q−s) for some
Q ∈ C[X]. ii) follows from a straightforward computation using the functional
equation (2.61). iii) is a consequence of ii). iv) is immediate from Proposition
4.1.3. ut

We will eventually prove that N as in Proposition 4.1.4 coincides with
Nπ, the minimal paramodular level. It follows from Proposition 4.1.4 that if
Nπ < N , then all the vectors in V (Nπ) are degenerate.

Klingen Vectors and θ′

One of the basic assertions of this work is the existence of certain paramodular
vectors with prescribed zeta integrals. One approach to proving this assertion
is to fix a non-negative integer n ≥ 0 and consider the extension θ′ : V →
V (n+ 1) of θ′ : V (n)→ V (n+ 1); see (3.4). Since θ′ takes values in V (n+ 1),
to prove the assertion it suffices to find W ∈ V such that Z(s, θ′W ) has the
desired form. Via the next lemma, which generalizes one of the formulas from
Proposition 4.1.3, we will use this idea in the proof of Theorem 4.4.1.

Lemma 4.1.5. Let (π, V ) be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character. Let n ≥ 0 be a non-negative inte-
ger. Then

Z(s, θ′W ) = qZ(s,W ) for W ∈ V Kl(pn).
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Proof. In this proof we use the abbreviation

zJ(x) =


1 x

1
1

1

 .
Let W ∈ V Kl(pn). We have by (3.4), the decomposition from Lemma 3.3.1,
the volume computation from Lemma 3.3.3 and the volume computation from
the proof of Lemma 3.3.4,

θ′W =
1

vol(K(pn+1) ∩K(pn))

∫
K(pn+1)

π(g)W dg

=
vol(Kl(pn+1))

vol(K(pn+1) ∩K(pn))

( ∑
u∈o/pn+1

π(zJ(u$−n−1))W

+
∑

v∈o/pn

π(tn+1z
J(v$−n))W

)
= q−n

( ∑
u∈o/pn+1

π(zJ(u$−n−1))W

+
∑

v∈o/pn

π(tn+1z
J(v$−n))W

)
. (4.5)

Since zJ(x) is in the center of the Jacobi group for any x ∈ F , we have
Z(s, π(zJ(u$−n−1))W ) = Z(s,W ). It follows that we are done if we can
show that Z(s, π(tn+1z

J(v$−n))W ) = 0 for v ∈ o. Let v ∈ o and set W ′ =
π(tn+1z

J(v$−n))W . Then W ′ is clearly invariant under
1

1
o 1

1

 and


1

1 p
1

1

 .
Let b ∈ o. Then 

1 b
1 b

1
1

 tn+1


1 v$−n

1
1

1



= tn+1


1 v$−n

1
1

1




1 vb$
$n+1b 1 vb$

1
−$n+1b 1

 .
This identity proves that W ′ is also invariant under
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1 o

1 o
1

1

 .
By Lemma 4.1.1,

Z(s, π(tn+1z
J(v$−n))W )

=
∫
F×

W (


a
a

1
1

 tn+1


1 v$−n

1
1

1

)|a|s−3/2 d×a.

Let a ∈ F× and x ∈ p−1. Then

ψ(c1x)W (


a
a

1
1

 tn+1


1 v$−n

1
1

1

)

= W (


1 x

1
1 −x

1



a
a

1
1

 tn+1


1 v$−n

1
1

1

)

= W (


a
a

1
1

 tn+1


1 v$−n

1
1

1




1 vx$
1

−$n+1x 1 −vx$
−$n+1x 1

)

= W (


a
a

1
1

 tn+1


1 v$−n

1
1

1

).

Since ψ has conductor o and c1 ∈ o×, this implies that

W (


a
a

1
1

 tn+1


1 v$−n

1
1

1

) = 0,

so that Z(s, π(tn+1z
J(v$−n))W ) = 0. This completes the proof. ut

4.2 Poles and P3-Theory

Let π be a generic, irreducible, admissible representation of GSp(4, F ) with
trivial central character. To prove the η Principle in Section 4.3 it is necessary
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to relate certain irreducible subquotients of the P3-filtration of VZJ to zeta
integrals. We will explain this connection in this section. Since it is convenient
in working with the P3-filtration, throughout this section we will take c1 = −1
and c2 = 1 when working with the Whittaker model W(π, ψc1,c2).

To begin, we will state the relationship between the P3-filtration and
L(s, π). This theorem depends strongly on the computation of L(s, π) due
to Takloo-Bighash; see [Tak].

Theorem 4.2.1. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, let V =W(π, ψ−1,1), and let

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ

be the chain of P3-subspaces from Theorem 2.5.3. If V2 = V1, then L(s, π) = 1.
Assume V2 6= V1. Let

V2 = U1 $ · · · $ UM $ UM+1 = V1

be a filtration by P3-subspaces such that Ul+1/Ul is irreducible for 1 ≤ l ≤M ,
and write

Ul+1/Ul = τP3
GL(1)(χl)

where χl is a character of F×, for 1 ≤ l ≤M . Then

L(s, π) =
M∏
l=1

L(s− 3/2, χl).

Proof. Thanks to [Tak], L(s, π) has been computed for all π. Note that the
statement of Theorem 5.1 of [Tak] has a misprint. In b) of that theorem “quo-
tient” should be replaced by “subrepresentation”; statement c) can be omit-
ted. Also, Theorem 4.1 of [Tak] does not cover σStGSp(4) for non-trivial σ; how-
ever, L(s, σStGSp(4)) = L(s, σν3/2). Table A.6 lists the semi-simplifications of
V1/V2 for all π. Using these two tables, it is easy to verify the claims of the
theorem. ut

In the remainder of this section, we will examine the relationship between
the P3-filtration and zeta integrals, rather than L(s, π). This requires some no-
tation. Let π be a generic, irreducible, admissible representation of GSp(4, F )
with trivial central character. Let D be the degree of L(s, π). More precisely,
if L(s, π) = 1, let D = 0. If L(s, π) 6= 1, then write

L(s, π) =
1

(1− a1q−s)n1 · · · (1− adq−s)nd

where a1, . . . , ad ∈ C× are distinct, and n1, . . . , nd are positive integers; in
this case, let

D = n1 + · · ·+ nd.

Using this terminology, Theorem 4.2.1 has the following immediate corollary:
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Corollary 4.2.2. Let the notation be as in Theorem 4.2.1. If V1 = V2, then
let Dun = 0; if V1 6= V2, then let Dun be the number of quotients Ul+1/Ul for
1 ≤ l ≤M such that χl is unramified. Then D = Dun.

Continue to let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and set V = W(π, ψ−1,1). Assume
D > 0. Let

a1 = r1e
iθ1 , . . . , ad = rde

iθd

where r1, . . . , rd are positive real numbers, and 0 ≤ θ1, . . . , θd < 2π. Since
the set of meromorphic functions Z(s,W ) for W ∈ V is exactly the set of
functions of the form P (qs, q−s)L(s, π) for P (X,Y ) ∈ C[X,Y ], it follows that
the poles of the Z(s,W ) for W ∈ V lie among the complex numbers

s1 +
2πni
log q

, . . . , sd +
2πni
log q

,

where
s1 =

log r1 + iθ1
log q

, . . . , sd =
log rd + iθd

log q
.

Note that q−s1 = a−1
1 , . . . , q−sd = a−1

d . Fix 1 ≤ j ≤ d. There exists ε > 0 such
that Z(s,W ) is holomorphic in the punctured disc 0 < |s−sj | < ε. Moreover,
if W ∈ V , then the Laurent expansion of Z(s,W ) has the form

Z(s,W ) =
λjnj

(W )
(s− sj)nj

+ · · ·+ λj1(W )
(s− sj)

+ λj0(W ) + λj−1(W )(s− sj) + · · · .

We will study the linear functionals

λji : V −→ C, 1 ≤ j ≤ d, 1 ≤ i ≤ nj

and relate them to the irreducible subquotients Ul+1/Ul from Theorem 4.2.1.
The following lemma describes some of the basic properties of the λji .

Lemma 4.2.3. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and set V = W(π, ψ−1,1). Assume
D = Dun > 0. The linear functionals λji for 1 ≤ j ≤ d and 1 ≤ i ≤ nj are
non-zero and trivial on V (ZJ), and thus define non-zero linear functionals on
VZJ . We have

λji (π(


1 −y

1
1 y

1

)W ) = ψ(y)λji (W ),

λji (π(


1

1
x 1

1

)W ) = λji (W ),
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λji (π(


u
u

1
1

)W ) = λji (W )

for x, y ∈ F , u ∈ o×, W ∈ V , 1 ≤ j ≤ d and 1 ≤ i ≤ nj. Moreover,

λjnj
(π(


$
$

1
1

)W ) = q−1/2ajλ
j
nj

(W ) (4.6)

for W ∈ V and 1 ≤ j ≤ d, and for 1 ≤ j ≤ d and 1 ≤ i < nj there exist
cib ∈ C×, i+ 1 ≤ b ≤ nj, such that

λji (π(


$
$

1
1

)W ) = q−1/2ajλ
j
i (W ) +

nj∑
b=i+1

cibλ
j
b(W ) (4.7)

for W ∈ V .

Proof. To see that the λji are non-zero, fix 1 ≤ j ≤ d and 1 ≤ i ≤ nj , and let
W ∈ V be such that Z(s,W ) = L(s, π). Then Z(s,W ) has a pole of order nj
at sj . There exists W ′ ∈ V such that Z(s,W ′) = (1−ajq−s)nj−iZ(s,W ). The
function Z(s,W ′) has a pole of order i at sj . This implies that λji (W

′) 6= 0.
Next, a computation using the formula for Z(s,W ) proves that each λji is
trivial on V (ZJ). Similar computations prove the remaining claims of the
lemma. Note in particular that

Z(s, π(


$
$

1
1

)W ) = q−1/2qsZ(s,W )

for W ∈ V , and that the Laurent expansion of the holomorphic function
q−1/2q−s at sj is

q−1/2qs =
∞∑
t=0

q−1/2aj
(log q)t

t!
(s− sj)t. ut

We can prove the main result of this section.

Theorem 4.2.4. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, let V =W(π, ψ−1,1), and let

0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ
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be the chain of P3-subspaces from Theorem 2.5.3. Assume D = Dun > 0. Let

V2 = U1 $ · · · $ UM $ UM+1 = V1

be a filtration by P3-subspaces such that Ul+1/Ul is irreducible for 1 ≤ l ≤M ,
and write

Ul+1/Ul ∼= τP3
GL(1)(χl)

where χl is a character of F×, for 1 ≤ l ≤ M . Then for 1 ≤ j ≤ d and 1 ≤
i ≤ nj we have λji (V1) 6= 0 and λji (V2) = 0. If l is the unique integer between
1 and M such that λji (Ul) = 0 and λji (Ul+1) 6= 0, then χl is unramified,

aj = q3/2χl($)

and the linear functional τP3
GL(1)(χl) ∼= Ul+1/Ul → C induced by λji is a non-

zero multiple of the functional that sends f ∈ τP3
GL(1)(χl) to

∫
F

f(

1
x 1

1

) dx.

Moreover, the map

{λji : 1 ≤ j ≤ d, 1 ≤ i ≤ nj}
∼−−−−→ {Ul+1/Ul : χl is unramified}

sending λji to Ul+1/Ul is a bijection.

Proof. To prove the first assertion of the theorem, let 1 ≤ j ≤ d. By the proof
of Proposition 2.6.4, Z(s,W ) is holomorphic for W ∈ V2. Hence, λj1(V2) =
· · · = λjnj

(V2) = 0. Let 1 ≤ i ≤ nj . By Lemma 4.2.3, we have λji 6= 0. Assume
λji (V1) = 0. Then λji induces a non-zero functional V0/V1 → C. Recalling that
every irreducible P3-subquotient of V0/V1 is of the form τP3

GL(2)(ρ) where ρ
is an irreducible, admissible representation of GL(2, F ), it follows that there
exists such a ρ and a non-zero functional λ : τP3

GL(2)(ρ)→ C such that

λ(

1
x 1

1

 f) = λ(f) and λ(

1
1 y

1

 f) = ψ(y)λ(f)

for x, y ∈ F and f ∈ τP3
GL(2)(ρ). However, by definition1

1 y
1

 f = f

for y ∈ F and f ∈ τP3
GL(2)(ρ), so that λ(f) = ψ(y)λ(f) for f ∈ τP3

GL(2)(ρ) and

y ∈ F . This contradiction implies that λji (V1) 6= 0, as desired.
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Now fix 1 ≤ j ≤ d. For 1 ≤ i ≤ nj , let 1 ≤ li ≤M be such that λji (Uli) = 0,
but λji (Uli+1) 6= 0. We claim that

l1 < · · · < lnj
,

that χl1 = · · · = χlnj
, and this character is unramified, and

aj = q3/2χl1($) = · · · = q3/2χlnj
($).

To prove this claim we begin with some initial observations. Let 1 ≤ i ≤ nj .
Then λji induces a non-zero linear functional λ : τP3

GL(1)(χli) ∼= Uli+1/Uli →
C via the definition λ(W + Uli) = λji (W ). This functional is of the type
considered in Lemma 2.5.5. Hence, by Lemma 2.5.5, we have

λ(

a 1
1

 f) = |a|−1χli(a)λ(f)

for f ∈ τP3
GL(1)(χli) and a ∈ F×. This means that

λji (π(


a
a

1
1

)W ) = |a|−1χli(a)λ
j
i (W ) (4.8)

for W ∈ Uli+1 and a ∈ F×. On the other hand, by Lemma 4.2.3, we have

i < nj =⇒ λji (π(


$
$

1
1

)W ) = q−1/2ajλ
j
i (W ) +

nj∑
b=i+1

cibλ
j
b(W ), (4.9)

i = nj =⇒ λjnj
(π(


$
$

1
1

)W ) = q−1/2ajλ
j
nj

(W ), (4.10)

for W ∈ VZJ . By (4.8), (4.9) and (4.10),

i < nj =⇒ (q−1/2aj − qχli($))λji (W ) = −
nj∑

b=i+1

cibλ
j
b(W ), (4.11)

i = nj =⇒ (q−1/2aj − qχlnj
($))λjnj

(W ) = 0, (4.12)

for W ∈ Uli+1. By Lemma 4.2.3, we also have

λji (π(


u
u

1
1

)W ) = λji (W )
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for u ∈ o× and W ∈ VZJ . By (4.8) we thus obtain

(1− χli(u))λ
j
i (W ) = 0

for W ∈ Uli+1. Since λji (Uli+1) 6= 0, we get that χli is unramified for 1 ≤
i ≤ nj . Having made these observations, we will now prove our claim by
induction, beginning at k = nj , and going down to k = 1. For 1 ≤ k ≤ nj ,
let (Pk) be the following statement: aj = q3/2χlk($) = · · · = q3/2χlnj

($),
and if k ≤ i < nj , then li < li+1. We need to verify (Pnj ) and prove the
implication (Pk) =⇒ (Pk−1) for 1 < k ≤ nj . To verify (Pnj ) it suffices to
check that aj = q3/2χlnj

($). This follows from (4.12) since λjnj
(Ulnj

+1) 6= 0.
Assume that (Pk) holds. To prove (Pk−1) it suffices to prove that lk−1 < lk
and aj = q3/2χlk−1($). Suppose lk < lk−1. By (4.9) with i = k − 1 we have

λjk−1(π(


$
$

1
1

)W ) = q−1/2ajλ
j
k−1(W ) +

nj∑
b=k

ck−1
b λjb(W ) (4.13)

for W ∈ VZJ . Let W ∈ Ulk+1. Since lk + 1 ≤ lk−1 we have W ∈ Ulk−1 .
Therefore, by definition,

λjk−1(π(


$
$

1
1

)W ) = λjk−1(W ) = 0.

Also, since lk +1 ≤ lb for k+1 ≤ b ≤ nj , we have W ∈ Ulb for k+1 ≤ b ≤ nj .
Therefore, λjb(W ) = 0 for k + 1 ≤ b ≤ nj . By (4.13), we get ck−1

k λjk(W ) = 0,
so that λjk(W ) = 0 since ck−1

k 6= 0. This contradicts λjk(Ulk+1) 6= 0. Assume
lk = lk−1. By Lemma 2.5.5, there exists c ∈ C× such that

λjk−1(W ) = cλjk(W )

for W ∈ Ulk−1+1 = Ulk+1. By (4.13), noting again that lk + 1 ≤ lb for k+ 1 ≤
b ≤ nj , we have

λjk−1(π(


$
$

1
1

)W ) = q−1/2ajλ
j
k−1(W ) + ck−1

k λjk(W )

for W ∈ Ulk−1+1 = Ulk+1. A substitution produces

cλjk(π(


$
$

1
1

)W ) = cq−1/2ajλ
j
k(W ) + ck−1

k λjk(W )
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for W ∈ Ulk−1+1 = Ulk+1. By (4.8), this gives

cqχlk($)λjk(W ) = cq−1/2ajλ
j
k(W ) + ck−1

k λjk(W )

for W ∈ Ulk−1+1 = Ulk+1. Since (Pk) holds, we have qχlk($) = q−1/2aj ,
so that ck−1

k λjk(W ) = 0 for W ∈ Ulk+1. Again, this is a contradiction. We
conclude that lk−1 < lk. By (4.11) with i = k − 1, we have

(q−1/2aj − qχlk−1($))λjk−1(W ) = −
nj∑
b=k

ck−1
b λjb(W )

for W ∈ Ulk−1+1. Since lk−1 + 1 ≤ lk and since lk < · · · < lnj , we have
λjb(W ) = 0 for k ≤ b ≤ nj . Therefore,

(q−1/2aj − qχlk−1($))λjk−1(W ) = 0

for W ∈ Ulk−1+1. Since λjk−1 is non-zero on Ulk−1+1 by definition, we obtain
q−1/2aj = qχlk−1($), as desired. The proof of our claim is complete.

The claim implies all the remaining assertions of the theorem except that
the map from the statement of the theorem is surjective. This follows from the
fact that the map is injective and that the two sets have the same cardinality
D = Dun by Corollary 4.2.2. ut

We note that Theorem 4.2.4 and Theorem 4.2.1 are consistent. That is,
by Theorem 4.2.4, if D = Dun 6= 0, then

L(s, π) =
d∏
j=1

1
(1− ajq−s)nj

=
∏

χl unramified

1
(1− q3/2χl($)q−s)

=
∏

χl unramified

1
(1− χl($)q−(s−3/2))

=
∏

χl unramified

L(s− 3/2, χl)

=
M∏
l=1

L(s− 3/2, χl).

This is also asserted by Theorem 4.2.1.

4.3 The η Principle

Let π be a generic, irreducible, and admissible representation of GSp(4, F )
with trivial central character, and let V = W(π, ψc1,c2). Let n ≥ 0 be an
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integer, and let W ∈ V (n). We saw in Proposition 4.1.3 that if n ≥ 2 and
W = ηW1 for some W1 ∈ V (n− 2), then W is degenerate, i.e., Z(s,W ) = 0.
In this section we will prove the opposite implication, which we call the η
Principle: If W ∈ V (n) is non-zero and degenerate, then n ≥ 2, and there
exists W1 ∈ V (n− 2) such that W = ηW1.

The proof of the η Principle consists of a number of results which reduce
the problem, and the final statement and argument appear in Theorem 4.3.7.
Suppose that π is as in the last paragraph, and W ∈ V (n) is non-zero and
degenerate. Then we need to prove two things: n ≥ 2, and W = ηW1 for
some W1 ∈ V (n − 2). As will be noted again in the proof of Theorem 4.3.7,
Corollary 7.1.5 immediately tells us that n = 0 is impossible, so that n ≥ 1.
That is, a non-zero spherical vector in a spherical representation is always
non-degenerate. Thus, we are reduced to proving that n = 1 is impossible,
and that W = ηW1 for some W1 ∈ V (n− 2). We will use P3-theory to prove
these assertions. Throughout this section we will write

W ′ = SW − qW,

where

SW =
∑

y∈p−1/o

π(


1 y

1
1 −y

1

)W

(see (3.10)). Our first lemma uses some of the algebra from Sect. 3.4 to relate
what we want to prove to a P3 condition about W ′. We will say more about
the strategy of the proof of the η Principle after the proof of this lemma.

Lemma 4.3.1. Let (π, V ) be a smooth representation of GSp(4, F ) for which
the center of GSp(4, F ) acts trivially. Let n ≥ 0 be a non-negative integer,
and let W ∈ V (n).

i) Assume that n ≥ 2. Then the following are equivalent:
a) There exists W1 ∈ V (n− 2) such that ηW1 = W ;
b) W ′ = 0;
c) W ′ ∈ V (ZJ).

ii) Assume that n = 1 and that the subspace of vectors of V fixed by Sp(4, F )
is trivial. If W ′ ∈ V (ZJ), then W = 0, or θ′W 6= 0 and there exists
W2 ∈ V (0), W2 6= 0, such that θ′W = ηW2.

Proof. i) Assume that n ≥ 2.
a) ⇐⇒ b) This is Lemma 3.2.4.
b) =⇒ c) This is trivial.
c) =⇒ a) Since W ′ ∈ V (ZJ), there exists an integer k ≥ 0 such that

∫
p−(n+k)/p−n

π(


1 y

1
1

1

)(SW − qW ) dy = 0.
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Set

W0 =
∫

p−(n+k)/p−n

π(


1 y

1
1

1

)W dy;

then SW0 = qW0. By Lemma 3.4.1,

W0 = θ′kW +W1 +W2

where W1 ∈ V (n+ k), W2 ∈ V (n+ k+ 1) and there exist W ′
1 ∈ V (n+ k− 2)

and W ′
2 ∈ V (n+k−1) such that W1 = ηW ′

1 and W2 = ηW ′
2. By Lemma 3.2.4

each Wi = ηW ′
i , 1 ≤ i ≤ 2, is invariant under

1 p−1

1
1 p−1

1

 .
Hence,

SW0 = Sθ′kW + SW1 + SW2

= Sθ′kW + qW1 + qW2.

On the other hand, SW0 = qW0 = qθ′kW + qW1 + qW2. We obtain

Sθ′kW = qθ′kW.

The claim a) now follows from Corollary 3.2.8.
ii) Assume that n = 1, the subspace of vectors of V fixed by Sp(4, F ) is

trivial, andW ′ ∈ V (ZJ). The same argument as in the proof of the implication
c) =⇒ a) from above proves that Sθ′kW = qθ′kW for some non-negative
integer k ≥ 0. The conclusion follows from Corollary 3.2.8. ut

As we mentioned, Lemma 4.3.1 connects the assertions of the η Principle
to P3-theory. To explain the next steps in the proof of the η Principle, assume
π is a generic, irreducible, admissible representation of GSp(4, F ) with trivial
central character, and let V = W(π, ψc1,c2). Let p : V → VZJ = V/V (ZJ)
be the projection. Then the P3 condition from Lemma 4.3.1 is p(W ′) = 0.
Assuming that W ∈ V (n), n ≥ 1, is degenerate, we will prove below that
indeed p(W ′) = 0. The proof will have two stages. Let

0 ⊂ V2 ⊂ V1 ⊂ VZJ = V/V (ZJ)

be the P3-filtration from Theorem 2.5.3. In the first stage we will prove
p(W ′) ∈ V2; in the second stage, starting from p(W ′) ∈ V2, we will prove
p(W ′) = 0. Note that, by Theorem 2.5.3, π is supercuspidal if and only if
V2 = VZJ . Thus, if π is supercuspidal, then the first stage is not required. The
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proof that p(W ′) ∈ V2 proceeds by showing that p(W ′) cannot have non-zero
image in any of irreducible subquotients of VZJ/V2. For this we will use the
connection between the P3-filtration of VZJ and poles of zeta integrals which
is explained in Section 4.2.

Lemma 4.3.2. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V =W(π, ψc1,c2). Let n ≥ 1
be an integer, and let W ∈ V (n) be degenerate. Set W ′ = SW − qW . Then
p(W ′) ∈ V2.

Proof. Let f ′ = p(W ′). We need to prove f ′ ∈ V2. The identities
ad− bc

a b
c d

1




1 z
1

1 −z
1

 =


1 zd

1
1 −zd

1



ad− bc −bcz −bdz bdz2

a b −bz
c d

1


and 

1 x y
1 y

1 −x
1




1 z
1

1 −z
1

 =


1 z

1
1 −z

1




1 x y −2yz
1 y

1 −x
1

 ,
along with the invariance of W under K(pn), imply that W ′ is invariant under
the elements of GSp(4, F ) of the form

u x y
a b x
c d −y

1

 , where
[
a b
c d

]
∈ GL(2, o) ∩

[
o p
o o

]
, x, y ∈ o, u ∈ o×.

Also,

∑
y∈p−1/o

π(


1 y

1
1 −y

1

)W ′ = 0.

It follows that f ′ is invariant under the subgroup of P3 consisting of the
elements a b xc d y

1

 , where
[
a b
c d

]
∈ GL(2, o) ∩

[
o p
o o

]
, x, y ∈ o,

and ∑
y∈p−1/o

1
1 y

1

 f ′ = 0.

Next, consider the chain of P3-subspaces



4.3 The η Principle 139

0 ⊂ V2 ⊂ V1 ⊂ VZJ

from Theorem 2.5.3. By this theorem, this chain has the property that V1/V2

is of finite length with each irreducible subquotient of the form τP3
GL(1)(χ) for

χ a character of F×, and VZJ/V1 is of finite length, with each irreducible
subquotient of the form τP3

GL(2)(ρ) for ρ an irreducible, admissible representa-
tion of GL(2, F ). By Lemma 4.3.3 below, and the second property of f ′ noted
above, we see that f ′ ∈ V1. Suppose that f ′ /∈ V2. Let

V2 = U1 $ · · · $ UM $ UM+1 = V1

be a filtration of P3-subspaces such that Ul/Ul+1 is irreducible for 1 ≤ l ≤M .
Write

Ul+1/Ul ∼= τP3
GL(1)(χl),

where χl is a character of F×. Let 1 ≤ l ≤ M be such that f ′ ∈ Ul+1 but
f ′ /∈ Ul, so that f ′ + Ul is a non-zero element of Ul+1/Ul ∼= τP3

GL(1)(χl). Then
by Lemma 4.3.4 below and two properties of f ′ noted above, χl is unramified.
A computation shows that since W is degenerate, so is W ′. Let λji correspond
to Ul+1/Ul via the bijection from Theorem 4.2.4. Using the definition of λji ,
it follows immediately that λji (W

′) = 0. By Theorem 4.2.4, it follows that
f ′ + Ul is in the kernel of the linear functional on τP3

GL(1)(χl) that sends an

element f ∈ τP3
GL(1)(χl) to

∫
F

f(

1
x 1

1

) dx.

By Lemma 4.3.4 below, this implies that f ′ ∈ Ul+1, a contradiction. ut

The following two lemmas are used in the proof of the above Lemma 4.3.2.

Lemma 4.3.3. Let ρ be an irreducible admissible representation of GL(2, F ).
Let f ′ ∈ τP3

GL(2)(ρ) be such that

∑
y∈p−1/o

1
1 y

1

 f ′ = 0.

Then f ′ = 0.

Proof. This follows from the fact that the elements1
1 y

1


of P3 for y ∈ F act trivially. ut
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Lemma 4.3.4. Let χ be a character of F×. Suppose that f ′ ∈ τP3
GL(1)(χ) is

invariant under the elementsa b xc d y
1

 , [
a b
c d

]
∈ GL(2, o) ∩

[
o p
o o

]
, x, y ∈ o,

and that ∑
y∈p−1/o

1
1 y

1

 f ′ = 0.

We have f ′ = 0 if and only if f(1) = 0. If χ is ramified or f ′ is in the kernel
of the linear functional on τP3

GL(1)(χ) that sends f to

∫
F

f(

1
x 1

1

) dx,

then f ′ = 0.

Proof. We haveg1 g2 zg3 g4 x
1

1 y1
1 y2

1

 =

1 g1y1 + g2y2
1 g3y1 + g4y2

1

g1 g2 zg3 g4 x
1


for [ g1 g2g3 g4 ] ∈ GL(2, F ) and z, x, y1, y2 ∈ F . Hence,

(

1 y1
1 y2

1

 f ′)(
g1 g2 zg3 g4 x

1

) = ψ(g3y1 + g4y2)f ′(

g1 g2 zg3 g4 x
1

).

Since f ′ is invariant under 1 o
1 o

1


we have

f ′(

g1 g2 zg3 g4 x
1

) = ψ(g3y1 + g4y2)f ′(

g1 g2 zg3 g4 x
1

)

for y1, y2 ∈ o, [ g1 g2g3 g4 ] ∈ GL(2, F ) and z, x ∈ F . Therefore,

g3 /∈ o or g4 /∈ o =⇒ f ′(

g1 g2 zg3 g4 x
1

) = 0.

Evaluating
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∑
y∈p−1/o

1
1 y

1

 f ′ = 0

at an arbitrary point
[ g1 g2 z
g3 g4 x

1

]
of P3 we also find that

(
∑

y∈p−1/o

ψ(g4y))f ′(

g1 g2 zg3 g4 x
1

) = 0.

This implies that

g4 ∈ p =⇒ f ′(

g1 g2 zg3 g4 x
1

) = 0.

Combining together what we know, we have

f ′(

g1 g2 zg3 g4 x
1

) 6= 0 =⇒ g3 ∈ o and g4 ∈ o×.

Now suppose p ∈ P3 is such that f ′(p) 6= 0. We can write

p =

1 z
1 x

1

1 y
1

1

s 1
1

1
t
1

k1 k2

k3 k4

1


with x, y, z ∈ F , s, t ∈ F× and

[
k1 k2
k3 k4

]
∈ GL(2, o). We get

f ′(p) = ψ(x)χ(s)f ′(

 k1 k2

tk3 tk4

1

).

As f ′(p) 6= 0 we must have tk3 ∈ o and tk4 ∈ o×. Moreover,

f ′(p) = ψ(x)χ(s)f ′(

 k1 k2

tk3 tk4

1

)

= ψ(x)χ(s)f ′(

1 −(tk4)−1k2

1
1

 k1 k2

tk3 tk4

1

)

= ψ(x)χ(s)f ′(

k−1
4 (k1k4 − k2k3)

tk3 tk4

1

)

= ψ(x)χ(sk−1
4 )f ′(

k1k4 − k2k3

tk3 tk4

1

).
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The element
[
k1k4−k2k3

tk3 tk4

]
is contained in GL(2, o) ∩ [ o p

o o ]. Hence,

f ′(p) = ψ(x)χ(sk−1
4 )f ′(

1
1

1

).

This implies that f ′ = 0 if and only if f ′(1) = 0.
Assume χ is ramified. Let u ∈ o× with χ(u) 6= 1. Then

f ′(1) = f ′(

u 1
1

) = χ(u)f ′(1)

implies f ′(1) = 0, so that f ′ = 0.
Finally, assume that ∫

F

f ′(

1
x 1

1

) dx = 0.

Using the useful identity (2.8) and the invariance properties of f ′, we have

0 =
∫
F

f ′(

1
x 1

1

) dx

=
∫
o

f ′(

1
x 1

1

) dx+
∫
F\o

f ′(

1
x 1

1

) dx

= f ′(1) +
∫
F\o

f ′(

−x−1

−x
1

 1
−1

1

) dx. (4.14)

Let x ∈ F \ o and y ∈ o. Then

f ′(

−x−1

−x
1

 1
−1

1

) = f ′(

−x−1

−x
1

 1
−1

1

1 y
1

1

)

= f ′(

−x−1

−x
1

1
1 y

1

 1
−1

1

)

= f ′(

1
1 −xy

1

−x−1

−x
1

 1
−1

1

)

= ψ(−xy)f ′(

−x−1

−x
1

 1
−1

1

).
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Since x /∈ o and this identity holds for all y ∈ o, we obtain

f ′(

−x−1

−x
1

 1
−1

1

) = 0.

By (4.14), we get f ′(1) = 0. Hence, f ′ = 0. ut

Now we will carry out the second stage of the proof that p(W ′) = 0. The
basis for this stage is the following P3-theory theorem. This theorem is about
the obstruction to the existence of a naive “Kirillov model” for generic, irre-
ducible, admissible representations of GSp(4, F ) with trivial central character.
In analogy to the case of GL(n) as presented in 5.18–5.20 of [BZ], one might
wonder if the map that sends an element of W(π, ψc1,c2) to its restriction to
the Klingen parabolic subgroup Q is injective. A bit of thought reveals, how-
ever, that this is naive: elements of V (ZJ) have trivial restrictions to Q. The
following theorem asserts that, at least when π is supercuspidal, then the ele-
ments of V (ZJ) are exactly the elements of V which have trivial restrictions,
so that the following sequence is exact:

0→ V (ZJ)→ V → {W |Q : W ∈ V =W(π, ψc1,c2)} → 0.

We do not know if this sequence is exact if π is not supercuspidal. Instead,
for an arbitrary representation, the theorem below involves just p−1(V2). If
the sequence were exact for all π, then the first stage of our argument that
p(W ′) = 0 could be eliminated.

Theorem 4.3.5. Let π be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character, and let V = W(π, ψc1,c2). As in
Section 2.5, let p : V → VZJ = V/V (ZJ) be the projection, and let V2 ⊂ VZJ

be the irreducible P3-subspace from Theorem 2.5.3. Let W ′ ∈ V , and assume
p(W ′) ∈ V2. Then p(W ′) = 0 if and only if W ′(Q) = 0.

Proof. A computation using that Q normalizes ZJ proves that if p(W ′) = 0,
so that W ′ ∈ V (ZJ), then W ′(Q) = 0. To prove the converse, let V0 be the
space of elements W ∈ p−1(V2) such that W (Q) = 0. We need to prove that
p(V0) = 0. To prove this, we note that p(V0) is a P3-subspace of V2. Since
V2 is an irreducible P3-subspace of VZJ , we have p(V0) = 0 or P (V0) = V2.
Assume p(V0) = V2; we will obtain a contradiction. Consider the non-zero
linear Whittaker functional VZJ → C that sends W + V (ZJ) to W (1). Since
p(V0) = V2, V2 lies in the kernel of this functional. Therefore, VZJ/V2 is non-
degenerate in the sense of the definition in 5.7 of [BZ]. However, VZJ/V2 is
degenerate. See 5.15 of [BZ]. ut

The previous theorem reduces the problem of showing that p(W ′) = 0 to
proving W ′(Q) = 0. We prove this in the next lemma. For the proof we will
need the following fact. If π is a generic, irreducible, admissible representation
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of GSp(4, F ) with trivial central character, V = W (π, ψc1,c2), and W ∈ V (n),
n ≥ 0, is degenerate, then

v(a) ≤ v(b) =⇒ W (


a
b
cb−1

ca−1

) = 0 (4.15)

for all a, b, c ∈ F×. If v(a) < v(b), then this is Lemma 4.1.2; if v(a) = v(b),
then this follows immediately from Lemma 4.1.1.

Lemma 4.3.6. Let π be a generic, irreducible, admissible representation of
GSp(4, F ) with trivial central character, and let V =W(π, ψc1,c2). Let n ≥ 0
be an integer, and let W ∈ V (n) be degenerate. Set W ′ = SW − qW . Then
W ′(Q) = 0.

Proof. We will prove the sufficient statement that for every z ∈ o

π(


1 z

1
1 −z

1

)W̃ − W̃

vanishes on Q, where W̃ = η−1W . By the transformation properties of Whit-
taker functions, it will suffice to show that

W̃ (


a
b
x cb−1

ca−1




1 z
1

1 −z
1

) = W̃ (


a
b
x cb−1

ca−1

)

for a, b, c ∈ F×, x ∈ F and z ∈ o. Now
a
b
x cb−1

ca−1




1 z
1

1 −z
1

 =


1 az

b
1

1 −azb
1



a
b
x cb−1

ca−1

 .
Hence,

W̃ (


a
b
x cb−1

ca−1




1 z
1

1 −z
1

) = ψ(c1
az

b
)W̃ (


a
b
x cb−1

ca−1

).

We thus need to prove

ψ(c1
az

b
)W̃ (


a
b
x cb−1

ca−1

) = W̃ (


a
b
x cb−1

ca−1

);
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to prove this, it will suffice to show that

v(a/b) < 0 =⇒ W̃ (


a
b
x cb−1

ca−1

) = 0.

Assume v(a/b) < 0, i.e., v(a) < v(b). We have

W̃ (


a
b
x cb−1

ca−1

) = W (


a$

b
x cb−1

ca−1$−1

)

= W (


a$

b
cb−1

ca−1$−1




1
1
y 1

1

).

where y = c−1bx. If v(y) ≥ 0, we get

W (


a$

b
x cb−1

ca−1$−1

) = W (


a$

b
cb−1

ca−1$−1

),

which is 0, since W is degenerate and v(a$) ≤ v(b) (see (4.15)). Assume
v(y) < 0. Using the useful identity (2.8), we have

W̃ (


a
b
x cb−1

ca−1

)

= W (


a$

b
cb−1

ca−1$−1




1
1
y 1

1

)

= W (


a$

b
cb−1

ca−1$−1



×


1

1 y−1

1
1




1
−y−1

−y
1




1
1

−1
1




1
1 y−1

1
1

)
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= W (


a$

b
cb−1

ca−1$−1




1
1 y−1

1
1




1
−y−1

−y
1

)

= W (


1

1 y−1c−1b2

1
1



a$

b
cb−1

ca−1$−1




1
−y−1

−y
1

)

= ψ(y−1c−1b2)W (


a$

by−1

ycb−1

ca−1$−1

).

This is zero since W is degenerate,

v(y) ≤ −1
1 ≤ −v(y)

v(a) + 1 ≤ v(b)− v(y)
v(a$) ≤ v(by−1),

and (4.15) holds. ut

Theorem 4.3.7 (η Principle). Let π be a generic, irreducible, admissi-
ble representation of GSp(4, F ) with trivial central character, and let V =
W(π, ψc1,c2). Let n ≥ 0 be an integer. If W is non-zero and degenerate, then
n ≥ 2, and there exists W1 ∈ V (n− 2) such that W = ηW1.

Proof. Assume that W is degenerate.
Suppose first n ≥ 2; we will prove that there exists W1 ∈ V (n − 2) such

that W = ηW1. As above, let W ′ = SW − qW , and let V2 ⊂ VZJ be as in
Theorem 2.5.3. By Lemma 4.3.2, p(W ′) ∈ V2. By Lemma 4.3.6, W ′(Q) = 0.
By Theorem 4.3.5, p(W ′) = 0. By Lemma 4.3.1, there exists W1 ∈ V (n − 2)
such that W = ηW1.

Finally, let us prove n ≥ 2. Since W 6= 0, by Corollary 7.1.5 below we can-
not have n = 0, i.e., a non-zero spherical vector has a non-zero zeta integral.
Suppose n = 1; we will obtain a contradiction. Arguing exactly as in the last
paragraph, we have p(W ′) = 0. Since W 6= 0, by Lemma 4.3.1, we have θ′W 6=
0 and θ′W = ηW2 for some W2 ∈ V (0), W2 6= 0. It follows that π is spherical.
By, for example, Theorem 5.2.2, dimV (1) = 2. Consider θW2, θ

′W2 ∈ V (1).
By Proposition 4.1.3, we have Z(s, θW2) = q−s+3/2Z(s,W2) and Z(s, θ′W2) =
qZ(s,W2). Since by Corollary 7.1.5 the zeta integral Z(s,W2) is non-zero, it
follows that θW2 and θ′W2 are linearly independent and thus form a basis for
V (1). Write W = aθW2 + bθ′W2, with a, b ∈ C and either a 6= 0 or b 6= 0. We
have 0 = Z(s,W ) = (aq−s+3/2 + bq)Z(s,W2). Since Z(s,W2) 6= 0, this is a
contradiction. ut
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Corollary 4.3.8. Let n ≥ 0. If W ∈ V (n) and W vanishes on the diagonal
subgroup of GSp(4, F ) then W = 0.

Proof. By Theorem 4.3.7, since W is degenerate, W = ηW1 for some W1 ∈
V (n−2). By the assumption onW ,W1 also vanishes on the diagonal subgroup.
Therefore, W1 = ηW2 for some W2 ∈ V (n−4). Continuing, there exists k ≥ 0
such that V (n− 2k) = 0 and W = ηkWk for some Wk ∈ V (n− 2k) = 0; that
is, W = 0. ut

Proposition 4.3.9. Let π be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character and let V = W (π, ψc1,c2). Assume
that π admits non-zero paramodular vectors, and let n be the smallest non-
negative integer such that V (n) 6= 0. Let W ∈ V (n) be non-zero. Then the
vectors

θ′iθjηkW, i, j, k ≥ 0,

are linearly independent. Consequently,

dimV (m) ≥
[
(m− n+ 2)2

4

]
= (m− n) + 1 +

[
(m− n)2

4

]
for m ≥ n.

Here, for x ∈ R, [x] is the unique integer such that [x] ≤ x < [x] + 1.

Proof. By Theorem 4.3.7, i.e., by the η Principle, we have Z(s,W ) 6= 0. For
t ≥ 0 a non-negative integer let d(t) be the dimension of the subspace of
V (n + t) spanned by the vectors of the form θ′iθjηkW where i, j and k
are non-negative integers such that i+ j + 2k = t. We claim that the vectors
θ′iθjηkW ∈ V (n+t) are linearly independent. We will prove this by induction
on t. If t = 0 this is clear. Assume the claim holds for all t′ with t′ < t; we
will prove it holds for t. Suppose there is a linear relation

0 =
∑

i+j+2k=t

c(i, j, k)θ′iθjηkW

with c(i, j, k) ∈ C. Then

−
∑
i+j=t

c(i, j, 0)θ′iθjW = η(
∑

i+j+2k=t,
k>0

c(i, j, k)θ′iθjηk−1W ).

By Proposition 4.1.3, this vector is degenerate. Hence, by Proposition 4.1.3
again,

0 = (
∑
i+j=t

c(i, j, 0)qiq3j/2(q−s)j)Z(s,W ).

Since Z(s,W ) is non-zero, this implies that c(i, j, 0) = 0 for i+ j = t. There-
fore, since η is invertible,

0 =
∑

i+j+2k=t,
t>0

c(i, j, k)θ′iθjηk−1W
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0 =
∑

i+j+2(k−1)=t−2,
k>0

c(i, j, k)θ′iθjηk−1W.

By the induction hypothesis, c(i, j, k) = 0 for k > 0, proving the claim. It
follows from the claim that d(t) is the number of solutions to i + j + 2k = t
where i, j and k are non-negative integers. Evidently, d(t) is the number of
solutions with k = 0, i.e., t+ 1, plus the number of solutions with k ≥ 1, i.e.,
d(t− 2). That is, d(t) = (t+ 1) + d(t− 2). Using this recursive relation, it is
easy to prove by induction that d(t) = (t+ 1) + [t2/4]. ut

4.4 The Existence Theorem for Generic Representations

In the first chapter, while proving basic properties about zeta integrals, we
used P3-theory to show that in a generic representation there exists a vector
W such that Z(s,W ) is non-zero and constant. As the proof of the following
theorem shows, this W can be chosen to be paramodular. In particular, this
proves the existence of non-zero paramodular vectors in generic representa-
tions.

Theorem 4.4.1 (Existence for Generic Representations). Let (π, V )
be a generic, irreducible, admissible representation of GSp(4, F ) with trivial
central character. Then V contains non-zero paramodular vectors. Moreover,
there exists a paramodular vector W in the Whittaker model of π such that
Z(s,W ) is constant and non-zero.

Proof. We will use the objects and notation of the proof of Proposition 2.6.4.
Let W0 ∈ X be such that j(p(W0)) = f0. A computation shows that f0 is
invariant under P3(o). Using (2.51), we compute

(j ◦ p)(
∫

Q(o)

π(k)W0 dk) =
∫

Q(o)

(j ◦ p)(π(k)W0) dk

=
∫

Q(o)

i(k)(j ◦ p)(W0) dk

=
∫

Q(o)

i(k)f0 dk

= (
∫

Q(o)

dk)f0.

Hence we may assume that W0 is invariant under Q(o). Since W0 is a smooth
vector, W0 is invariant under Kl(pn) for some n. In the proof of Proposition
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2.6.4 we saw that Z(s,W0) 6= 0 (in fact, it was constant). By Lemma 4.1.5,
we have

Z(s, θ′W0) = qZ(s,W0) 6= 0.

Since θ′W0 ∈ V (n+ 1), the proof is complete. ut





5

Non-supercuspidal Representations

In this chapter we investigate the structure of paramodular vectors in non-
supercuspidal, irreducible, admissible representations (π, V ) with trivial cen-
tral character. In all cases we determine the minimal paramodular level Nπ
and prove that dimV (Nπ) = 1. In fact, we determine dimV (n) for all n ≥ Nπ
and prove the Oldforms Principle.

Our method is to realize these representations via the Sally-Tadić classi-
fication described in Sect. 2.2 as irreducible subquotients of appropriate full
induced representations. The basic structural results underlying our investi-
gations in induced representations are certain explicit double coset decompo-
sitions of

B\GSp(4, F )/K(pn), P\GSp(4, F )/K(pn), Q\GSp(4, F )/K(pn),

where B, P , Q are the standard parabolic subgroups of GSp(4). Using these
explicit decompositions we first compute the dimensions of the spaces of
paramodular vectors in full induced representations. Then, by calculating the
action of level raising operators in convenient full induced representations, we
are able to compute paramodular vectors for all non-supercuspidal represen-
tations.

In addition, knowledge of the explicit form of paramodular vectors in non-
supercuspidal representations will be used to compute Atkin–Lehner eigen-
values and, in subsequent chapters, Hecke eigenvalues.

5.1 Double Coset Decompositions

In this section we will obtain several double coset decompositions involving
the paramodular group. Let s1 and s2 be the Weyl group elements as defined
in Sect. 2.1. In the following lemma Si(pn) denotes the Siegel congruence
subgroup of level pn, as defined in (2.4).
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Lemma 5.1.1. For any n ≥ 1, the following is a complete system of repre-
sentatives for Si(pn)\GSp(4, o).

1
1

y z 1
x y 1

 , x, y, z ∈ o/pn, x, y, z ≡ 0 mod p, (5.1)


1

1
y z 1
x y 1

 s2, x, y, z ∈ o/pn, x, y ≡ 0 mod p, (5.2)


1

1
y z 1
x y 1

 s2s1, x, y, z ∈ o/pn, x ≡ 0 mod p, (5.3)


1

1
y z 1
x y 1

 s2s1s2, x, y, z ∈ o/pn. (5.4)

In particular #Si(pn)\GSp(4, o) = q3n−3(q + 1)(q2 + 1).

Proof. By the Bruhat decomposition,

GSp(4) = P t Ps2


1

1 ∗
1

1

 t Ps2s1


1 ∗ ∗
1

1 ∗
1

 t Ps2s1s2


1 ∗ ∗
1 ∗ ∗

1
1



= P t P


1

1
∗ 1

1

 s2 t P


1
1
∗ ∗ 1
∗ 1

 s2s1 t P


1
1
∗ ∗ 1
∗ ∗ 1

 s2s1s2
over any field. In particular, over the field k = o/p with q elements we obtain
the assertion of the lemma for n = 1. Now assume that n > 1. It is easy to
see that

Si(p) =
⊔

x,y,z∈o/pn−1

Si(pn)


1

1
y$ z$ 1
x$ y$ 1

 .
The lemma now follows from the following simple fact: Let G be a group, H
a subgroup, and G = tgHg with some representatives g ∈ G. Let further L
be a subgroup of H and H = th Lh. Then G = tg th Lhg. ut

For the statement of the following proposition define for i ≥ 1
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Li =


1
$i 1

1
−$i 1

 , Mi =


1

1
$i 1

$i 1

 . (5.5)

In addition, we write G = GSp(4).

Proposition 5.1.2. With notations as in (5.5) we have, for any n ≥ 1, the
following complete systems of representatives.

double coset space # representatives

1, s1, Li, 1 ≤ i < n, Mj , 1 ≤ j < n,
B(F )\G(F )/K(pn)

[ (n+2)2

4

]
LiMj , 1 ≤ j < i < n− j

Q(F )\G(F )/K(pn) n+ 1 1, s1, Li, 1 ≤ i < n

P (F )\G(F )/K(pn)
[
n+2

2

]
1, Mi, 1 ≤ i ≤ n

2

Proof. We will first consider representatives for P (F )\G(F )/K(pn). It is clear
that such representatives can be found amongst representatives for

P (F )\G(F )/Kl(pn) ∼= P (o)\G(o)/Kl(pn)
∼= P (o/pn)\G(o/pn)/Q(o/pn)
∼= Si(pn)\G(o)/Q(o). (5.6)

Representatives for Si(pn)\G(o) are given in Lemma 5.1.1, and we have to
consider the action of Q(o) from the right on this space. Since s2 ∈ Q(o),
elements of type (5.2) are equivalent in P (F )\G(F )/Kl(pn) to elements of
type (5.1). Similarly, elements of type (5.3) are equivalent to elements of type
(5.4). The representatives in (5.4) are obviously all equivalent to s2s1s2. But

s2s1s2 =


1

$n

$−n

1




$−n

1
−1

−$n

 .
Hence the representatives in (5.4) are all equivalent to the identity matrix. It
follows that P (F )\G(F )/K(pn) is represented by 1 and

1
1

r 1
s r 1

 , r, s ∈ o/pn, r, s ≡ 0 mod p.

Let us abbreviate such a matrix by (r, s). We have the following matrix iden-
tities.
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(r, s) =


1 r−1 −s−1

−sr−1 0 1
s−1r2 −s−1r
r 0

 (sr−1, 0)


1 s−1

s−1r2 −1
1 0

1

 , (5.7)

(r, s) =


1

−sr−1 1
1

sr−1 1




1
1 sr−2

1
1

 (r, 0)


1

1 −sr−2

1
1

 , (5.8)

(r, s) =


−s−1$n −s−1r −$−n

1
1 −r$−n

−s$−n




$−n

1
−s−1r2 1 −s−1r

−$n −$ns−1r 0 −$ns−1

 . (5.9)

Equation (5.7) shows that if v(r) ≤ v(s) ≤ 2v(r) and v(s) ≤ n, then (r, s) is
equivalent to (sr−1, 0) in the double coset space P (F )\G(F )/K(pn). If v(s) ≥
2v(r) then (5.8) shows that (r, s) is equivalent to (r, 0). And if v(s) ≤ v(r) then
(5.9) shows that (r, s) is equivalent to 1. This proves that P (F )\G(F )/K(pn)
is represented by 1 and

1
1

r 1
r 1

 , r ∈ o/pn, r ≡ 0 mod p.

We can multiply by units, thus assuming that r = $m, 1 ≤ m ≤ n. The
relation

($n−m, 0)


$m 0 1 −$−n

0 0 1 0
−$n −1 −$n−m 0
$n 0 0 0



=


0 $m−n 1 −$−n

−$m 0 1 0
0 −$−m

$n−m 0

 ($m, 0) (5.10)

shows that ($m, 0) and ($n−m, 0) are equivalent. One can check that these are
the only equivalences between such representatives, and that form < n none of
these is equivalent to 1. This proves the statement about P (F )\G(F )/K(pn).

To find representatives for B(F )\G(F )/K(pn) we take the set of represen-
tatives we just found for P (F )\G(F )/K(pn) and multiply each element from
the left with a set of representatives for B(F )\P (F ). As for the latter we
choose

1 and s1


1 x

1
1 −x

1

 , x ∈ F.
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It is easy to see that each representative thus obtained is equivalent in
B(F )\G(F )/K(pn) to one of the following:

1, s1, (5.11)
Li, 1 ≤ i < n, (5.12)
Mi, 1 ≤ i < n, (5.13)
LiMj , 1 ≤ i, j < n. (5.14)

For example, the identity

s1Mj =


−$n−j 1

−$−j $−n

$j

$j−n

Mn−j


$−n

1
1

$n

 (5.15)

shows that the occurring elements s1Mj fall under the class (5.13). It now
remains to find all equivalences between the elements listed in (5.11) to (5.14).
We have identities

Mj


1

1 −$i−j

1
1

 =


1

1 −$i−j

1
1

LiMj


1

1
1

$i+j 1

 , (5.16)

Mn−j


$−n

$j−i −1
1 0

−$n $n−i−j

 =


$i+j−n −$j−n $i−n $−n

$j−i −1 0
$i−j $−j

$n−i−j

LiMj .

(5.17)

The equation (5.16) shows that if n − i ≤ j ≤ i, then LiMj is equivalent to
Mj , and (5.17) shows that if n− i ≥ j ≥ i, then LiMj is equivalent to Mn−j .
Thus we are left with LiMj for 1 ≤ j < i < n− j and n− j < i < j < n. But
the second type is equivalent to the first type because of the relation

Ln−iMn−j =


$i+j−n −$j−n $i−n $−n

−$j−i 2 $−i

$i−j $−j

−$n−i−j

LiMj


$−n

1
1

$n

 .
Thus, we get the representatives as stated in the proposition. We postpone
checking that there are no equivalences between these elements until after we
do the case of Q(F )\G(F )/K(pn).

Turning to Q(F )\G(F )/K(pn), representatives for Q(F )\G(F )/K(pn) can
be found amongst the representatives forB(F )\G(F )/K(pn). Since we are now
able to conjugate with s2, an element Mj is equivalent to Lj . For j < i < n−j
the identity
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LiMj =


$n−i−j $−i $−n

$i−j 2 $i−n

1 $j−i $j−n

−$i+j−n

Ln−i


$−n

1
1 −$i−j

$n −$n−i−j


shows that LiMj is equivalent to Ln−i. Thus we are left with the elements as
listed in the proposition, and it is easy to check that there are no equivalences
amongst them.

Finally, we need to check that there are no equivalences between the stated
representatives for B(F )\G(F )/K(pn). This is now easily accomplished by
multiplying an equality B(F )gK(pn) = B(F )g′K(pn) on the left by P (F ) or
Q(F ), and using that there are no equivalences between the stated represen-
tatives for P (F )\G(F )/K(pn) or Q(F )\G(F )/K(pn). ut

We remark that one alternatively could work with L0 and M0, and get the
following systems of representatives.

double coset space # representatives

Li, 0 ≤ i ≤ n, Mj , 1 ≤ j < n,
B(F )\G(F )/K(pn)

[ (n+2)2

4

]
LiMj , 1 ≤ j < i < n− j

Q(F )\G(F )/K(pn) n+ 1 Li, 0 ≤ i ≤ n

P (F )\G(F )/K(pn)
[
n+2

2

]
Mi, 0 ≤ i ≤ n

2

Note that B(F )s1K(pn) = B(F )L0K(pn), and

M0 =


1 $−n

$n 1
$−n

1




−$−n

−1
1 1

$n $n

 (5.18)

shows that P (F )1K(pn) = P (F )M0K(pn).

5.2 Induction from the Siegel Parabolic Subgroup

Let π be an admissible representation of GL(2, F ) admitting a central char-
acter ωπ. Let σ be a character of F× such that ωπσ2 = 1, so that the repre-
sentation π o σ of GSp(4, F ) has trivial central character. In this section we
consider paramodular vectors in πo σ. We will prove that πo σ is paramod-
ular if and only if there exists a non-negative integer n such that σπ contains
a non-zero vector invariant under

Γ1(pn) :=
{[

a b
c d

]
∈ GL(2, o) : c ∈ pn, d ∈ 1 + pn

}
. (5.19)
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In general, if τ is an admissible representation of GL(2, F ), and τΓ1(p
n) 6= 0 for

some n, then we let Nτ be the smallest such n; for convenience, if τΓ1(p
n) = 0

for all n ≥ 0, then we also define Nτ = ∞. We call Nτ the level of τ . If τ
is irreducible, then we let a(τ) be the conductor of the L-parameter of τ , as
defined in (2.50). It is known that if τ is irreducible and Nτ <∞, then Nτ =
a(τ). See [JPSS] and [K]. We will prove that the minimal paramodular level of
πoσ is n := Nσπ+2a(σ); in fact, we will determine all the paramodular vectors
in πoσ. We note that the statement that n is the minimal paramodular level
of πoσ is consistent with, and motivated by, one of our main results, Theorem
7.5.9. For suppose, for example, that π o σ is irreducible and paramodular.
Then π is irreducible. Let µ : W ′

F → GL(2,C) be the L-parameter of π. The
L-parameter of π o σ is defined by

w 7−→

σ(w) det(µ(w))
σ(w)µ(w)

σ(w)

 ∈ GSp(4,C);

see Sect. 2.4. The conductor of this L-parameter is a(σπ) + 2a(σ) = Nσπ +
2a(σ). Theorem 7.5.9 asserts that this is the minimal paramodular level of
π o σ.

First we require a lemma. We remind the reader of the A′ notation intro-
duced in (2.1).

Lemma 5.2.1. Let n be a positive integer. Let u ∈ F× and A =
[
a b
c d

]
∈

GL(2, F ) be given. For 1 ≤ i ≤ n/2 the following statements are equivalent:

i) There exists an X ∈M(2, F ) of the form X =
[
x y
z x

]
such that

[
A
uA′

][
1 X

1

]
∈ P (F ) ∩MiK(pn)M−1

i . (5.20)

Here Mi is as in (5.5).
ii) The following conditions are satisfied:

• u ∈ o×,
• det(A) ∈ o×,
• u det(A)−1 ∈ 1 + pi,

• A ∈
[

o p−i

pn−i o

]
.

Proof. A calculation shows that M−1
i

[
A
uA′

][
1 X

1

]
Mi ∈ K(pn) if and only

if u ∈ o× and the following (5.21) to (5.24) are fulfilled:

A(1 +$iX) ∈
[

o o
pn o

]
, (5.21)
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AX ∈
[

o p−n

o o

]
, (5.22)

uA′ −A−$iAX ∈
[

pn−i p−i

pn−i pn−i

]
, (5.23)

uA′ −$iAX ∈
[

o o
pn o

]
. (5.24)

We first show that ii) follows from i). Consider the homomorphism

P (F ) ∩MiK(pn)M−1
i −→ F× × F×,[

A ∗
uA′

]
7−→ (u, det(A)).

Its image is a compact subgroup of F××F×, therefore contained in o×× o×.
This shows u ∈ o× and det(A) ∈ o×. By (5.23) and (5.24) we get

A =
[
a b
c d

]
∈

[
pn−i p−i

pn−i pn−i

]
+

[
o o
pn o

]
=

[
o p−i

pn−i o

]
,

hence a, d ∈ o, b ∈ p−i and c ∈ pn−i. Let us first assume that i < n/2. Then
bc ∈ pn−2i ⊂ p, and it follows from ad− bc ∈ o× that a, d ∈ o×. By (5.22) and
(5.23) we get

uA′ −A ∈
[

pn−i p−i

pn−i pn−i

]
+

[
pi pi−n

pi pi

]
=

[
pi pi−n

pi pi

]
.

Since A′ = 1
ad−bc

[
a −b
−c d

]
, it follows that ( u

ad−bc−1)a ∈ pi, hence u
ad−bc ∈ 1+

pi. Therefore all the conditions in ii) are fulfilled. — Now assume that i = n/2.
Then we argue similarly, except that we cannot conclude from ( u

ad−bc − 1)a ∈
pn/2 that u

ad−bc ∈ 1 + pn/2. But we also have ( u
ad−bc − 1)d ∈ pn/2, so we can

make our conclusion if a or d is a unit. Assume therefore that neither a nor d
is a unit. Then it follows from ad− bc ∈ o× that v(b) = −n/2 and v(c) = n/2.
Adding (5.21) and (5.24) gives

uA′ +A ∈
[

o o
pn o

]
.

By the lower left coefficient we see ( u
ad−bc−1)c ∈ pn, and consequently u

ad−bc ∈
1 + pn/2.

Now assume u and A are given such that ii) holds. We define

X := $−i
( u

ad− bc
A−1

[
a $ib
$ic d

]
− 1

)
.

It is then easy to verify that X has the required form and that (5.21) to (5.24)
are fulfilled. ut
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Theorem 5.2.2. Let π be an admissible representation of GL(2, F ), and let
σ be a character of F×. We assume that ωπσ2 = 1, so that the induced
representation π o σ has trivial central character.

i) The minimal paramodular level of π o σ is n := Nσπ + 2a(σ). Assume
that this number is finite, so that Nσπ is finite, Nσπ = a(σπ), and n =
a(σπ) + 2a(σ). Then

dim
(
(π o σ)K(pn)

)
= dim

(
(σπ)Γ1(p

a(σπ))
)
.

In particular, if π is irreducible, then dim
(
(π o σ)K(pn)

)
= 1.

ii) If π is irreducible and infinite-dimensional, so that Nσπ is finite and
Nσπ = a(σπ), then

dim
(
(π o σ)K(pm)

)
=


[ (m− n+ 2)2

4

]
if m ≥ n = a(σπ) + 2a(σ),

0 if m < n.

iii) If π = χ1GL(2) and σχ is unramified, then

dim
(
(π o σ)K(pm)

)
=


[m

2

]
− a(σ) + 1 if m ≥ n = 2a(σ),

0 if m < n.

iv) If π = χ1GL(2) and σχ is ramified, then πoσ has no non-zero paramodular
invariant vectors.

Proof. Let V be the space of π. The standard space of πoσ consists of smooth
functions f : GSp(4, F )→ V such that

f(
[
A ∗
uA′

]
g) = |u−1 det(A)|3/2σ(u)π(A)f(g).

Assume f is K(pm) invariant for somem. By Proposition 5.1.2, f is determined
by its values on Mi, 0 ≤ i ≤ m

2 , where we put M0 := 1. For 0 ≤ i ≤ m
2 set

vi := f(Mi). Let 0 ≤ i ≤ m
2 , and assume that vi 6= 0. Using

f(
[
A ∗
uA′

]
Mik) = |u−1 det(A)|3/2σ(u)π(A)vi

for
[
A ∗
uA′

]
∈ P (F ), k ∈ K(pm) we conclude that we must have

σ(u)π(A)vi = vi for all
[
A ∗
uA′

]
∈ P (F ) ∩MiK(pm)M−1

i . (5.25)

It follows from Lemma 5.2.1 that for given u ∈ (1 + pi) ∩ o× there exists an

element
[

1 ∗
u1

]
in P (F ) ∩MiK(pm)M−1

i . Since vi 6= 0 we have σ((1 + pi) ∩

o×) = 1. In other words, we have
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i ≥ a(σ). (5.26)

It further follows from Lemma 5.2.1 and (5.25) that

σ(det(A))π(A)vi = vi for all A ∈
[

o p−i

pm−i o

]
, det(A) ∈ o×. (5.27)

Therefore, the representation σπ, which has trivial central character, has a

non-zero vector fixed under
[

o× o
pm−2i o×

]
. In case i < m

2 this is the congruence

subgroup GL(2, o)∩
[

o o
pm−2i o

]
. In case i = m

2 it follows that σπ is unramified.

In any case we have Nσπ < ∞ and Nσπ = a(σπ) ≤ m − 2i. Together with
(5.26) it follows that m ≥ a(σπ) + 2a(σ), if there exists a non-zero K(pm)
invariant f . In other words, if a non-zero paramodular vector exists, then
Nσπ < ∞ and the minimal paramodular level is greater than or equal to
n = Nσπ + 2a(σ) = a(σπ) + 2a(σ).

It also follows from the above considerations that if n < ∞, then a non-
zero K(pn)-invariant function f must be supported on P (F )Ma(σ)K(pn), and
on this double coset we necessarily have

f(
[
A ∗
uA′

]
Ma(σ)k) = |u−1 det(A)|3/2σ(u)π(A)v for k ∈ K(pn), (5.28)

where v ∈ V is invariant under (σπ)(B), B ∈
[

o p−a(σ)

pa(σπ)+a(σ) o

]
, det(B) ∈

o×. Conversely, if n < ∞, then we can define f by formula (5.28). Thus, if
n <∞, then the space of K(pn)-invariant f is isomorphic to the space of v ∈ V
invariant under (σπ)(B) with B as above. But this space in turn is isomorphic
to the space of v ∈ V invariant under (σπ)(Γ1(pa(σπ))). This proves i).

The more general formula in ii) follows also from the above considerations.
We saw that a non-zero K(pm) invariant function f must be supported on the
cosets P (F )Mi K(pm) with

a(σ) ≤ i ≤ 1
2
(
m− a(σπ)

)
.

For each i we shall count how many possibilities we have for the vector
vi = f(Mi). We saw that a necessary and sufficient condition for vi is

that it is invariant under (σπ)(B) for B ∈
[

o p−i

pm−i o

]
, det(B) ∈ o×. The

space of such vi is isomorphic to the space of vectors in V invariant under
the congruence subgroup Γ0(pm−2i) (defined by the “c” coefficient being in
pm−2i). By the well-known structure of oldforms in an irreducible, admissi-
ble, infinite-dimensional GL(2) representation, the dimension of this space is
m − 2i − a(σπ) + 1. The dimension of the space of possible K(pm) invariant
functions f is therefore given by
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[(m−a(σπ))/2]∑
i=a(σ)

(m− 2i− a(σπ) + 1).

This sum is evaluated to
[ (m−n+2)2

4

]
, proving ii). The formula in iii) is derived

similarly; instead of m− 2i−a(σπ)+1 all the dimensions are 1. Assertion iv)
already follows from (5.27). ut

Corollary 5.2.3. Let χ1, χ2, σ be characters of F× such that χ1χ2σ
2 = 1.

Put n := a(χ1σ) + a(χ2σ) + 2a(σ). Then

dim
(
(χ1 × χ2 o σ)K(pm)

)
=


[ (m− n+ 2)2

4

]
if m ≥ n,

0 if m < n.

In particular, the minimal paramodular level of χ1×χ2 oσ is n, and the space
of K(pn)-invariant vectors is one-dimensional.

Proof. We apply Theorem 5.2.2 with π = χ1×χ2. The induced representation
σπ = σχ1×σχ2 is known to have a unique newform of level a(σχ1)+a(σχ2).
ut

5.3 Representations of Type IIIb and IVc

Next we treat the case of induction from the Klingen parabolic subgroup.
There are two subcases that require special attention; we consider these in
the present section and examine the general case in the next section.

The special cases are representations of type IIIb and IVc. Both representa-
tions are constituents of induced representations χoσ1GSp(2) with characters
χ and σ of F×. The transformation property for the functions in the standard
space of this representation is

f(

y ∗ ∗
A ∗
y−1 det(A)

 g) = |y2 det(A)−1|χ(y)σ(det(A))f(g).

In particular, we have

f(


1

1
a
a

 g) = σ(a)f(g) for all a ∈ o×.

If f is paramodular of level m, then, by Proposition 5.1.2, it is determined
by its values on 1, s1, and Li, 1 ≤ i ≤ m − 1. Each of these elements com-
mutes with the matrix diag(1, 1, a, a). It follows that f(g) = σ(a)f(g) for
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each a ∈ o× and each of these representatives g. Hence, if σ is ramified, any
K(pm) invariant f must be zero. As a consequence, IIIb and IVc do not have
paramodular vectors if σ is ramified ; we proved this earlier using different
methods in Theorem 3.4.3. In the following we consider unramified σ, which
will be written in the form σ = ν−s/2 for some s ∈ C. We then must have
χ = νs in order for the center to act trivially. Hence we shall consider the
induced representation νs o ν−s/21GSp(2). Its standard space Vs consists of
functions f : GSp(4, F )→ C with the transformation property

f(

y ∗ ∗
A ∗
y−1 det(A)

 g) = |y2 det(A)−1|s/2+1f(g) (5.29)

for all g ∈ GSp(4, F ). The representation νsoν−s/21GSp(2) is reducible if and
only if qs ∈ {1, q2, q−2}. If qs ∈ {1, q2, q−2}, then νsoν−s/21GSp(2) has length
two, and its constituents are tabulated in (2.11) and (2.9).

Type IIIb

We shall first investigate unramified representations of type IIIb. In the
case of trivial central character they are of the form νs o ν−s/21GSp(2) with
qs /∈ {q−2, 1, q2}. Let f0 ∈ Vs be the unique GSp(4, o) invariant vector. By
Proposition 5.1.2, a K(pm) invariant vector in νsoν−s/21GSp(2) is determined
by its values on

1, um, L1, . . . Lm−1, (5.30)

and it is easy to see that these values can be prescribed arbitrarily. Hence
dimVs(m) = m+ 1.

Lemma 5.3.1. We identify the space Vs(m) with Cm+1 via evaluating func-
tions at the elements listed in (5.30). Then the (m + 1) ×m–matrices corre-
sponding to the linear operators θ and θ′ from Vs(m− 1) to Vs(m) are given
as follows. For m = 1,

θ :
[
qs/2+1(q + 1)
q(qs+1 + 1)

]
, θ′ :

[
q(qs+1 + 1)
qs/2+1(q + 1)

]
.

For m = 2,

θ :

qs/2+1(q + 1) 0
0 q(qs+1 + 1)

qs/2+1 q

 , θ′ :

q(qs+1 + 1) 0
0 qs/2+1(q + 1)
q qs/2+1

 .
For m ≥ 3,
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θ : qs/2+1



q + 1
0 qs/2+1 + q−s/2

... q1+(1−m)(s/2+1) 1

q
. . .
. . . 1

1 0 . . . 0 q


,

θ′ : q



qs+1 + 1
0 qs/2+1 + qs/2

... qs+1+(1−m)(s/2+1) 1

qs+1 . . .
. . . 1

1 0 . . . 0 qs+1


.

Proof. These are straightforward computations using Lemma 3.2.2; no special
matrix identities are needed. ut

Lemma 5.3.2. Let f0 be the GSp(4, o) invariant vector in the representation
νs o ν−s/21GSp(2), where qs /∈ {q−2, 1}. Then the vectors

θmf0, θm−1θ′f0, . . . θ′
m
f0 (5.31)

are a basis for Vs(m) for any m ≥ 1.

Proof. We prove the statement by induction on m. The matrices for θ, θ′ :
Vs(m−1)→ Vs(m),m ≥ 1, were calculated in Lemma 5.3.1: write θ = [c1···cm]
and θ′ = [c′1 · · ·c′m] where the ci and the c′i are column vectors. Suppose m = 1.
Since V (0) is spanned by f0 and dimV (1) = 2, to prove the statement for
m = 1 it suffices to check that θf0 and θ′f0 are linearly independent. This
follows from the fact that for m = 1 we have det(A1) 6= 0, A1 = [c1c′1]; this
uses qs 6= q−2 and qs 6= 1. Now assume that the statement holds for all k
with 1 ≤ k < m. To prove the statement for m it will suffice to prove that the
dimension of θVs(m− 1) + θ′Vs(m− 1) is dimVs(m) = m+ 1; this is because
θVs(m− 1) + θ′Vs(m− 1) is spanned by the m+ 1 vectors in (5.31) thanks to
the induction hypothesis. If m = 2, then det(A2) 6= 0, where A2 = [c1c2c′3],
implies that θVs(m− 1) + θ′Vs(m− 1) has dimension m+ 1; this uses qs 6= 1.
If m ≥ 3, then detAm 6= 0, where Am = [c1c′2c3 · · · cmc′m], implies that the
dimension of θVs(m− 1) + θ′Vs(m− 1) is m+ 1; this uses qs 6= 1. ut

It follows from dimVs(m) = m+ 1 that the vectors ηf0, θ2f0, θθ′f0 and θ′2f0
of level 2 cannot be linearly independent. Indeed we have:

Lemma 5.3.3. Assume that qs /∈ {q−2, 1}. Then the trivial representation
1GSp(4) is not contained in νs o ν−1/21GSp(2), so that the discussion at the
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end of Sect. 3.1 and after Lemma 3.2.3 about the space of all paramodular
vectors Vpara applies. In the algebra of operators generated by θ, θ′ and η on
Vpara in νs o ν−s/21GSp(2) we have the relation

q1−s(1− qs)2η + θ2 − q−s/2(1 + qs)θθ′ + θ′
2 = 0.

Proof. The trivial representation is not contained in νs o ν−1/21GSp(2) if this
representation is irreducible. If it is reducible, then necessarily qs = q2; in
this case the trivial representation is a quotient and not a subrepresentation
of νs o ν−1/21GSp(2) by (2.9). By Lemma 5.3.2 (and the fact that all our
operators commute), it is enough to verify this relation on the spherical vector
f0. This is a calculation using the matrices from Lemma 5.3.1; the matrix for
η : Vs(0)→ Vs(2) is easily computed to be the transpose of [qs+2, qs+2, qs+2].
ut

We summarize:

Proposition 5.3.4. In the representation νs o ν−s/21GSp(2) of type IIIb,
where qs /∈ {q−2, 1, q2}, the space of K(pm) invariant vectors has dimension
m+1. If f0 is a non-zero GSp(4, o) invariant vector, then this space is spanned
by

θmf0, θm−1θ′f0, . . . θ′
m
f0.

In particular, the Oldforms Principle holds for νs o ν−s/21GSp(2).

Type IVc

As above we consider the induced representation νsoν−s/21GSp(2). In the case
that qs ∈ {q−2, q2} it is not irreducible but has length 2. For qs = q2 it contains
the representation L(ν3/2StGL(2), ν

−3/2) of type IVc as a subrepresentation,
and 1GSp(4) as the quotient; see (2.9).

Proposition 5.3.5. The representation L(ν3/2StGL(2), ν
−3/2σ) of type IVc,

where σ is unramified and quadratic, has minimal paramodular level p. The
dimension of the space of K(pm) invariant vectors is m, for any m ≥ 1. If f1
is a non-zero K(p) invariant vector, then this space is spanned by

θm−1f1, θm−2θ′f1, . . . θ′
m−1

f1.

In particular, the Oldforms Principle holds for representations of type IVc.

Proof. We may assume that σ = 1F× . As we saw before, the space of K(pm)
invariant vectors in the standard space Vs of the full induced representation
νsoν−s/21GSp(2) has dimension m+1. For qs = q2 we have IVc and 1GSp(4) as
irreducible constituents. It follows that the dimension of the space of K(pm)
invariant vectors in IVc is m, for any m ≥ 0. In particular, the minimal
paramodular level of this representation is p. Now consider νs o ν−s/21GSp(2)
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with qs = q−2. This induced representation contains σ1GSp(4) as a subrepre-
sentation (as is evident from (5.29)) and IVc as the resulting quotient. The
formulas in Lemma 5.3.1 are still valid. As in the proof of Lemma 5.3.2 we
define the matrix Am, m ≥ 1. We see that Am is invertible, except in the case
m = 1. It is clear that m = 1 is exceptional, since θf0 and θ′f0 must both lie
in the one-dimensional space Vtriv of the subrepresentation 1GSp(4). However,
for m ≥ 2 it follows that the images of θ and θ′, as operators on Vs(m − 1),
together span all of Vs(m). Consequently, for m ≥ 2, the images of θ and θ′

as operators
Vs(m− 1)/Vtriv −→ Vs(m)/Vtriv,

span all of Vs(m)/Vtriv. But these quotients are the spaces of paramodular
vectors of level m − 1 resp. m in IVc. It follows that the space of K(pm)
invariant vectors in IVc is indeed spanned by the vectors of level m obtained
by repeatedly applying θ and θ′ to f1 and taking linear combinations. ut

5.4 Induction from the Klingen Parabolic Subgroup

Now let π be an admissible representation of GL(2, F ) admitting a central
character ωπ, and let χ be a character of F× with χωπ = 1, so that the
induced representation χ o π of GSp(4, F ) has trivial central character. In
this section we consider paramodular vectors in χoπ. We will prove that the
minimal paramodular level of χo π is n := 2Nπ, and generally determine the
paramodular vectors in χoπ. Here, Nπ is defined as at the beginning of Sect.
5.2, so that Nπ is the smallest non-negative integer n such that πΓ1(p

n) 6= 0 if
such an n exists, and Nπ =∞ otherwise. That n is the minimal paramodular
level is again consistent with, and motivated by, our main results. For suppose,
for example, that χoπ is irreducible and paramodular. Then π is irreducible;
let µ : W ′

F → GL(2,C) be its L-parameter. By Sect. 2.4, this L-parameter is
defined by

w 7−→
[
χ(w) det(µ(w))µ(w)′

µ(w)

]
∈ GSp(4,C). (5.32)

The conductor of this parameter is a(χπ) + a(π) = 2a(π) = 2Nπ. Theorem
7.5.9 asserts that this is the minimal paramodular level of π o σ.

Lemma 5.4.1. Let n be a positive integer. Let y ∈ F× and A =
[
a b
c d

]
∈

GL(2, F ) be given. For 1 ≤ i < n the following statements are equivalent:

i) There exist λ, µ, κ ∈ F such thaty A
y−1 det(A)




1 λ µ κ
1 µ

1 −λ
1

 ∈ Q(F ) ∩ LiK(pn)L−1
i . (5.33)
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Here Li is as in (5.5).
ii) The following conditions are satisfied:

• y, a, d ∈ o×.

• a− y ∈
{

pn−i if 2i ≥ n,
pi if 2i < n.

• b ∈
{

o if 2i ≥ n,
p2i−n if 2i < n.

• c ∈ pn−i.

Proof. Multiplying out matrices, it is easy to see that the conditions in ii)
are necessary for i) to hold. To see that they are sufficient, assume first that
2i ≥ n. Then we can put λ = µ = κ = 0, and a computation shows that (5.33)
holds. In case that 2i < n, we put

λ = $−i(ay−1 − 1), µ = $−iby−1, κ = $−2iby−1,

and again it is easy to check that (5.33) holds. ut

Theorem 5.4.2. Let χ be a character of F×, and let π be an admissible
representation of GL(2, F ). We assume that χωπ = 1, so that the induced
representation χo π has trivial central character.

i) The minimal paramodular level of χ o π is n := 2Nπ. Assume that this
number is finite, so that Nπ is finite and Nπ = a(π). Then

dim
(
(χo π)K(pn)

)
= dim

(
πΓ1(p

a(π))
)

(the congruence subgroup Γ1 was defined in (5.19)). In particular, if π is
irreducible, then dim

(
(χo π)K(pn)

)
= 1.

ii) If π is irreducible and infinite-dimensional, then Nπ is finite, so that Nπ =
a(π), and

dim
(
(χo π)K(pm)

)
=


[ (m− n+ 2)2

4

]
if m ≥ n = 2a(π),

0 if m < n.

iii) If π = σ1GL(2) and σ is unramified, then

dim
(
(χo π)K(pm)

)
= m+ 1 for any m ≥ n = 0.

iv) If π = σ1GL(2) and σ is ramified, then χoπ has no non-zero paramodular
invariant vectors.

Proof. Statements iii) and iv) have already been proven in Sect. 5.3. To prove
i) and ii), assume first that Nπ ≥ 1. Let V be the space of π. The standard
space of χo π consists of smooth functions f : GSp(4, F )→ V such that
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f(

y ∗ ∗
A ∗
y−1 det(A)

 g) = |y2 det(A)−1|χ(y)π(A)f(g).

Let m be a non-negative integer, and assume that f is K(pm) invariant for
some m. By Proposition 5.1.2, f is determined by its values on 1, s1, and Li,
1 ≤ i < m. If r is one of these elements, and if vr := f(r), then we must have

χ(y)π(A)vr = vr for all

y ∗ ∗
A ∗
y−1 det(A)

 ∈ Q(F ) ∩ rK(pm)r−1. (5.34)

In particular, it follows that v1 is GL(2, o) invariant. Since we have assumed
Nπ ≥ 1, we conclude v1 = 0. Moreover, we have

1
a b$−m

c$m d
ad− bc

 ∈ Q(F ) ∩ s1K(pm)s1 for
[
a b
c d

]
∈ GL(2, o),

from which it follows that vs1 = 0. Thus f is non-zero at most on the cosets
represented by the Li, 1 ≤ i < m. We write vi := f(Li) for 1 ≤ i < m. Let
1 ≤ i < m and assume that vi 6= 0 and 2i ≥ m. It follows from (5.34) and
Lemma 5.4.1 that

π(
[
a b
c d

]
)vi = ωπ(a)vi for all

[
a b
c d

]
∈

[
o× o

pm−i o×

]
. (5.35)

Therefore Nπ < ∞ and m − i ≥ Nπ = a(π). It also follows from (5.34) and
Lemma 5.4.1 that

π(
[
a b
c d

]
)vi = vi for all

[
a b
c d

]
∈

[
1 + pi o

pi o×

]
, (5.36)

and therefore i ≥ a(π). We conclude that m ≥ 2a(π). Assume that vi 6= 0 for
some 1 ≤ i < m with 2i < m. Then it follows from (5.34) and Lemma 5.4.1
that

π(
[
a b
c d

]
)vi = ωπ(a)vi for all

[
a b
c d

]
∈

[
o× p2i−m

pm−i o×

]
. (5.37)

Since [
o× p2i−m

pm−i o×

]
=

[
$2i−m

1

] [
o× o
pi o×

] [
$−(2i−m)

1

]
,

we conclude that Nπ <∞ and i ≥ Nπ = a(π). Since m > 2i and 2i ≥ 2a(π) =
n, we have m > n = 2a(π). Thus, for a non-zero K(pm) invariant f to exist,
we must have m ≥ n = 2a(π). Moreover, if n <∞, then a K(pn)-invariant f
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is supported on Q(F )La(π)K(pn). Using Lemma 5.4.1, it is easy to see that f
is well-defined by the formula

f(

y ∗ ∗
A ∗
y−1 det(A)

La(π)k) = |y2 det(A)−1|χ(y)π(A)v (k ∈ K(pn))

if and only if v ∈ V has the property

π

[
a b
c d

]
v = ωπ(a)v for all

[
a b
c d

]
∈

[
o× o

pa(π) o×

]
.

The space of such v is isomorphic to V Γ1(p
a(π)), proving i).

For part ii) we shall count dimensions similarly as in Theorem 5.2.2. We
saw above that a non-zero K(pm)-invariant function f must be supported on
the cosets Q(F )Li K(pm) with

a(π) ≤ i ≤ m− a(π).

If a(π) ≤ i < m/2, then we have the condition (5.37) on vi = f(Mi). The
dimension of the space of such vectors is i− a(π) + 1. If m/2 ≤ i ≤ m− a(π),
then we have the condition (5.35) on vi = f(Mi), and the dimension of the
space of such vectors is m− i−a(π)+1. Our dimension count therefore reads

[(m−1)/2]∑
i=a(π)

(i− a(π) + 1) +
m−a(π)∑

i=[(m+1)/2]

(m− i− a(π) + 1).

Evaluating these expressions gives
[ (m−n+2)2

4

]
, proving ii).

If π is unramified, i.e., if a(π) = 0, then χ = ω−1
π is also unramified. In

this case the arguments are similar, except that there are now paramodular
vectors supported on the double cosets Q(F )1K(pm) and Q(F )s1K(pm). ut

5.5 Saito–Kurokawa Representations

In this section we determine the paramodular vectors in a certain family of
irreducible, admissible, non-generic representations of GSp(4, F ) with trivial
central character. Studying the paramodular vectors in these representations
will allow us to determine the paramodular vectors in representations of type
IIb, Vb, Vc, VIc and XIb. The definition of this family requires the following
proposition.

Proposition 5.5.1. Let π be an irreducible, admissible, infinite-dimensional
representation of GL(2, F ) with trivial central character, and let σ be a char-
acter of F×. Assume that π � ν3/2× ν−3/2. Then the representation ν1/2πo
ν−1/2σ of GSp(4, F ) has a unique irreducible quotient Q(ν1/2π, ν−1/2σ) and
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a unique irreducible subrepresentation G(ν1/2π, ν−1/2σ). The representation
Q(ν1/2π, ν−1/2σ) is non-generic, G(ν1/2π, ν−1/2σ) is generic, and these two
representations are the only constituents of ν1/2π o ν−1/2σ. Moreover:

i) If π ∼= χ× χ−1 for a character χ of F×, then

Q(ν1/2π, ν−1/2σ) ∼= χ1GL(2) o χ−1σ (IIb),

G(ν1/2π, ν−1/2σ) ∼= χStGL(2) o χ−1σ (IIa).

ii) If π ∼= ξStGL(2) with a non-trivial quadratic character ξ of F×, then

Q(ν1/2π, ν−1/2σ) ∼= L(ν1/2ξStGL(2), ν
−1/2σ) (V b),

G(ν1/2π, ν−1/2σ) ∼= δ([ξ, νξ], ν−1/2σ) (V a).

iii) If π ∼= StGL(2), then

Q(ν1/2π, ν−1/2σ) ∼= L(ν1/2StGL(2), ν
−1/2σ) (V Ic),

G(ν1/2π, ν−1/2σ) ∼= τ(S, ν−1/2σ) (V Ia).

iv) If π is supercuspidal, then

Q(ν1/2π, ν−1/2σ) ∼= L(ν1/2π, ν−1/2σ) (XIb),

G(ν1/2π, ν−1/2σ) ∼= δ(ν1/2π, ν−1/2σ) (XIa).

Proof. Assume π ∼= χ × χ−1 for a character of F×. We may assume that
e(χ) ≥ 0; by assumption, χ 6= ν±3/2. There are isomorphisms

ν1/2π o ν−1/2σ ∼= ν1/2χ× ν1/2χ−1 o ν−1/2σ

∼= ν1/2χo (ν1/2χ−1 o ν−1/2σ)
∼= ν1/2χo (χ−1σ × ν−1/2σ)
∼= ν1/2χo (ν−1/2σ × χ−1σ)
∼= ν1/2χo (ν−1/2χo χ−1σ)
∼= ν1/2χ× ν−1/2χo χ−1σ.

Here, the fourth step is justified because χ−1σ×ν−1/2σ is irreducible; this uses
e(χ) ≥ 0 and χ 6= ν3/2. There is an exact sequence of GSp(4) representations

0→ χStGL(2) o χ−1σ → ν1/2χ× ν−1/2χo χ−1σ → χ1GL(2) o χ−1σ → 0.

Since χ2 6= ν±1 and χ 6= ν±3/2 by assumption, χStGL(2)oχ−1σ and χ1GL(2)o
χ−1σ are irreducible and of type IIa and IIb, respectively. Moreover, as can be
seen from the expression of these two representations as Langlands quotients
from Sect. 2.2, χStGL(2)oχ−1σ � χ1GL(2)oχ−1σ. Considering the possibilities
for e(χ), and using the above isomorphisms one sees that ν1/2πo ν−1/2σ is a
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standard module; see Sect. 8 of [Tad] for the definition. Since ν1/2πoν−1/2σ is
a standard module, it admits a unique irreducible quotient, which is χ1GL(2)o
χ−1σ. Therefore, χStGL(2) oχ−1σ is the unique irreducible subrepresentation
of ν1/2π o ν−1/2σ. Finally, by Theorem 2 of [Rod], χStGL(2) o χ−1σ and
ν1/2πoν−1/2σ each have nonzero, unique up to scalars, Whittaker functionals.
It follows that χStGL(2) o χ−1σ is generic and 1GL(2) o χ−1σ is non-generic.
This proves all the assertions about ν1/2π o ν−1/2σ. The arguments for the
other cases are similar. ut

We now define the Saito–Kurokawa representations of GSp(4, F ) to be
the representations Q(ν1/2π, ν−1/2σ) for π an irreducible, admissible, infinite-
dimensional representation of GL(2, F ) with trivial central character such
that π � ν3/2 × ν−3/2, and σ a character of F×. By Proposition 5.5.1,
the Saito–Kurokawa representations of GSp(4, F ) include all the represen-
tations of type IIb, Vb, VIc, XIb; all the representations of type Vc are
also included because Q(ν1/2ξStGL(2), ν

−1/2ξσ) is the type Vc representa-
tion L(ν1/2ξStGL(2), ν

−1/2ξσ) for all non-trivial quadratic characters of F×

and characters σ of F×. Evidently, the representation Q(ν1/2π, ν−1/2σ) has
central character σ2, so that Q(ν1/2π, ν−1/2σ) has trivial central character if
and only if σ2 = 1.

Turning to the problem of determining paramodular vectors in Saito–
Kurokawa representations, the following lemma gives a necessary condition
for a Saito–Kurokawa representation to admit non-zero paramodular vectors.

Lemma 5.5.2. Let π be an irreducible, admissible, infinite-dimensional repre-
sentation of GL(2, F ) with trivial central character such that π � ν3/2×ν−3/2,
and let σ be a character of F× with σ2 = 1. If Q(ν1/2π, ν−1/2σ) is paramod-
ular, then σ is unramified.

Proof. This follows from Theorem 3.4.3. One can also use the results already
proven in this chapter to prove some cases. In the case of IIb it also follows
from Theorem 5.2.2 iv) since this representation is equal to χ1GL(2)oχ−1σ. In
the case of Vb it also follows from Theorem 5.2.2 iv) since this representation
is a constituent of ν1/2ξ1GL(2) o ν−1/2ξσ. In the case of VIc it follows from
Theorem 5.4.2 iv) since this representation is a constituent of 1F× oσ1GSp(2).
ut

The Minimal Level

Let (π, Vπ) be an irreducible, admissible, infinite-dimensional representation
of GL(2, F ) with trivial central character such that π � ν3/2 × ν−3/2. For
a complex parameter s let Vs be the standard space of the representation
νsπoν−s. Explicitly, Vs is the space of smooth functions f : G(F )→ Vπ that
satisfy the transformation property
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f(
[
A ∗
uA′

]
g) = |u−1 det(A)|s+3/2 π(A)f(g),

[
A ∗
uA′

]
∈ P (F ).

Let n = a(π) be the level of π. By Theorem 5.2.2 there is an essentially
unique non-zero K(pn)-invariant vector f0 in Vs, and no paramodular vectors
at better levels. By the proof of Theorem 5.2.2, this newform f0 is supported
on P (F )K(pn), and is on this double coset given by

f0(
[
A ∗
uA′

]
k) = |u−1 det(A)|s+3/2 π(A)v0, k ∈ K(pn), (5.38)

where v0 ∈ Vπ is Γ1(pn)-invariant (hence v0 is the unique newform for π).
We shall now apply the level raising operators θ : Vs(n) → Vs(n + 1) and
θ′ : Vs(n)→ Vs(n+ 1) to f0.

Lemma 5.5.3. Let the notations be as above. We have:

i) (θf0)(1) = qs+3/2v0 + q π(
[

1
$

]
)v0.

ii) (θf0)(Mi) = 0 for 1 ≤ i ≤ n+1
2 .

iii) (θ′f0)(1) = qs+3/2 π(
[

1
$

]
)v0 + qv0.

iv) (θ′f0)(Mi) = 0 for 1 ≤ i ≤ n+1
2 .

Proof. By Lemma 3.2.2 i) we have for any g ∈ GSp(4, F )

(θf0)(g) = f0(g


1

1
$
$

) +
∑
c∈o/p

f0(g


1
$

1
$




1
1 c$−1

1
1

).

For g = 1 we obtain the formula in i) by the transformation properties of f0.
To prove ii), assume that n ≥ 1. For g = Mi, where 1 ≤ i ≤ (n+ 1)/2, we get

(θf0)(Mi) = qs+3/2f0(Mi−1) + π(
[

1
$

]
)

∑
c∈o/p

f0(Mi


1

1 c$−1

1
1

).

Using

Mi


1

1 c$−1

1
1

 =


1 $−i c−1$1−2i

−c$−1

−c−1$ c−1$1−i

1




1
1

−c$i−1 1
−c$i−1 1




1 −c−1$1−2i

−c−1$ −1
1

1

 , (5.39)
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we get

(θf0)(Mi) = qs+3/2f0(Mi−1) + π(
[

1
$

]
)f0(Mi)

+
∑

c∈(o/p)×

|$−1|s+3/2π(
[

1 $−i

−c

]
)f0(


1

1
−c$i−1 1

−c$i−1 1

)

= qs+3/2f0(Mi−1) + π(
[

1
$

]
)f0(Mi)

+ qs+3/2
∑

c∈(o/p)×

π(
[

1 $−i

−c

]
)f0(


1

1
$i−1 1

$i−1 1

)

= qs+3/2f0(Mi−1) + π(
[

1
$

]
)f0(Mi)

+ qs+3/2
∑

c∈(o/p)×

π(
[

1 c$−i

1

]
)f0(Mi−1)

= qs+3/2
∑
c∈o/p

π(
[

1 c$−i

1

]
)f0(Mi−1) + π(

[
1
$

]
)f0(Mi). (5.40)

Assume first that n ≥ 2. Then the last term in (5.40) vanishes; if 1 ≤ i ≤ n/2
it vanishes because f0 is supported on P (F )K(pn), and if i = (n + 1)/2 it
vanishes for the same reason because the identity (5.10) shows that M(n+1)/2

and M(n−1)/2 determine the same double coset in P (F )\G(F )/K(pn). Hence,
if n ≥ 2,

(θf0)(Mi) = qs+3/2
∑
c∈o/p

π(
[

1 c$−i

1

]
)f0(Mi−1).

If 2 ≤ i ≤ (n+1)/2, this is zero because f0 is supported on P (F )K(pn). For i =
1 we use (5.18) to compute f0(M0) = q−n(s+3/2)ε( 1

2 , π)v0, and consequently

(θf0)(M1) = q(1−n)(s+3/2)ε
(1
2
, π

) ∑
c∈o/p

π(
[

1 c$−1

1

]
)v0. (5.41)

One checks easily that this vector in the GL(2) representation π is invari-

ant under
[

o× p−1

o×

]
and

[
1
pn 1

]
. Therefore, π(

[
$

1

]
)(θf0)(M1) is invariant

under the subgroup generated by
[

o× o
o×

]
and

[
1

pn−1 1

]
. This subgroup con-

tains Γ1(pn−1); since n is the minimal level of π, it follows that the expression
in (5.41) must be zero.
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Now assume that n = 1. Then π = χStGL(2) with an unramified quadratic
character χ. We have to check ii) only for i = 1, in which case (5.40) says

(θf0)(M1) = qs+3/2
∑
c∈o/p

π(
[

1 c$−1

1

]
)f0(M0) + π(

[
1
$

]
)f0(M1). (5.42)

Since f0 is K(p)-invariant, we have f0(M1) = f0(1) = v0. By (5.18),
f0(M0) = q−(s+3/2)ε( 1

2 , π)v0. The paper [Sch1] contains the explicit form of
the newform v0 in a standard model for χStGL(2). Using this explicit form, it
is easy to compute ε(1/2, π) = −χ($), and to evaluate the sum. The result
is (θf0)(M1) = 0 (the summation amounts to applying a Hecke operator; see
our Table 6.1 on p. 215).

The computations for iii) and iv) are similar, using Lemma 3.2.2 ii) and
the matrix identity

Mi


1 c$−n−1

1
1

1

 =


−c$−1

$n−i 1 c−1$n+1−2i

1
c−1$n+1−i −c−1$




1
1

−c$i−1 1
−c$i−1 1



−c−1$ −$−n

1 −c−1$n+1−2i

1
$n

 . (5.43)

ut

Lemma 5.5.4. Using the same notations as above, the following two state-
ments are equivalent.

i) θf0 and θ′f0 are linearly dependent.
ii) The complex parameter s has the property that q2s+1 = 1.

In this case we have θf0 = ±θ′f0.

Proof. This follows easily from Lemma 5.5.3. ut

Proposition 5.5.5. Let π be an irreducible, admissible, infinite-dimensional
representation of GL(2, F ) with trivial central character of level n such that
π � ν3/2×ν−3/2, and let σ be an unramified character of F× such that σ2 = 1.

i) The Saito–Kurokawa representation Q(ν1/2π, ν−1/2σ) (type IIb, Vb, VIc
or XIb) has a paramodular vector of level n, unique up to scalars, and no
paramodular vectors at lower levels.

ii) The generic constituent G(ν1/2π, ν−1/2σ) of ν1/2π o ν−1/2 (type IIa, Va,
VIa or XIa) has a paramodular vector of level n+1, unique up to scalars,
and no paramodular vectors at lower levels.
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Proof. i) We may assume that σ = 1. We consider the following induced
representations:

V1/2 = ν1/2π o ν−1/2 = G(ν1/2π, ν−1/2)︸ ︷︷ ︸
sub

+Q(ν1/2π, ν−1/2)︸ ︷︷ ︸
quot

,

V−1/2 = ν−1/2π o ν1/2 = Q(ν1/2π, ν−1/2)︸ ︷︷ ︸
sub

+G(ν1/2π, ν−1/2)︸ ︷︷ ︸
quot

.

We know by Theorem 5.2.2 that the minimal level of both induced repre-
sentations above is n = a(π). More precisely, we have dimV±1/2(n) = 1
and dimV±1/2(n + 1) = 2. The essentially unique newform in Vs is given
by (5.38). Suppose that our assertion is wrong. Then G(ν1/2π, ν−1/2) has a
unique newform at level n. In other words, the function f0 lies in the sub-
space G(ν1/2π, ν−1/2) of V1/2. By Lemma 5.5.4, the vectors θf0 and θ′f0 are
linearly independent. Hence, under our assumption, Q(ν1/2π, ν−1/2) has no
paramodular vectors at level n or n+ 1.

Now let Ṽ be the submodule of V−1/2 carrying the non-generic repre-
sentation Q(ν1/2π, ν−1/2), and let p : V−1/2 → V−1/2/Ṽ be the projection.
Let f1 be the newform of level n in V−1/2. Since, under our assumption, Ṽ
has no paramodular vectors at level n, we have p(f1) 6= 0. By Lemma 5.5.4,
the vectors θf1 and θ′f1 are linearly dependent. The projection p commutes
with θ and θ′, hence θ(p(f1)) and θ′(p(f1)) are also linearly dependent. But
f0 := p(f1) 6= 0 is the newform in V−1/2/Ṽ ∼= G(ν1/2π, ν−1/2), hence this
contradicts the linear independence of θf0 and θ′f0 shown above.

ii) Changing notation, let Ṽ be the submodule of V1/2 carrying the rep-
resentation G(ν1/2π, ν−1/2), and let p : V1/2 → V1/2/Ṽ be the projection.
Let f0 ∈ V1/2 be the newform of level n. By Lemma 5.5.4 the vectors θf0
and θ′f0 are linearly independent. On the other hand, again by Lemma 5.5.4,
θ(p(f0)) and θ′(p(f0)) are linearly dependent, since p(f0) is the newform in
V1/2/Ṽ ∼= Q(ν1/2π, ν−1/2). It follows that some non-zero linear combination
of θf0 and θ′f0 lies in Ṽ . ut

For later use we note that the arguments in this proof show the following. Let
f1 be the essentially unique K(pn)-invariant vector in V−1/2 = ν−1/2πo ν1/2.
Then f1 lies in the subspace realizing Q(ν1/2π, ν−1/2), and we have θf1 = θ′f1.
Let f0 be the essentially unique K(pn)-invariant vector in V1/2 = ν1/2πoν−1/2.
Then θf0−θ′f0 is a non-zero K(pn+1) invariant vector in the subspace realizing
G(ν1/2π, ν−1/2).

Paramodular Dimensions

We shall next determine the dimensions of the spaces of paramodular vectors
in Q(ν1/2π, ν−1/2σ) and G(ν1/2π, ν−1/2σ).
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Lemma 5.5.6. Let π be an irreducible, admissible, infinite-dimensional rep-
resentation of GL(2, F ) with trivial central character of level n such that
π � ν3/2 × ν−3/2, and let σ be an unramified character of F× such that
σ2 = 1. Let f0 be the newform of level n in Q(ν1/2π, ν−1/2σ). Then, for any
m ≥ n, the vectors θdηef0, d, e ≥ 0, d+2e = m−n, are linearly independent.

Proof. Again we may assume that σ = 1. We shall realize Q(ν1/2π, ν−1/2) as
a subspace of V−1/2. Define a linear map

ϕ :
∑
d,e≥0

C θdηef0 −→ Vπ, f 7−→ f(1). (5.44)

By the formula for f0 given in (5.38), the vector ϕ(f0) is the newform in Vπ.
A straightforward computation (cf. Lemma 5.5.3) shows that

ϕ(ηf) = qπ(
[

1
$

]
)ϕ(f), ϕ(θf) = qϕ(f) + qπ(

[
1
$

]
)ϕ(f).

Hence, on the GL(2) side, the η and θ operators correspond to operators
producing oldforms from newforms. It is known that these GL(2) operators
produce linearly independent vectors, proving that the sum in (5.44) is direct.
ut

We can now compute all the dimensions of the spaces of paramodular
vectors for Saito–Kurokawa representations with σ unramified. Again let π
be an irreducible, admissible, infinite-dimensional representation of GL(2, F )
with trivial central character of level n such that π � ν3/2 × ν−3/2, and let σ
be an unramified character of F× such that σ2 = 1. Let VQ be the space of
Q(ν1/2π, ν−1/2σ) and let VG be the space of G(ν1/2π, ν−1/2σ). By Proposition
5.5.5 i), n is the minimal level of Q(ν1/2π, ν−1/2σ). It follows from Lemma
5.5.6 that for the dimensions of the spaces of paramodular vectors in this
representation we have the estimate

dimVQ(m) ≥
[m− n+ 2

2

]
for any m ≥ n. (5.45)

By Proposition 5.5.5 ii), the minimal level of G(ν1/2π, ν−1/2) is n + 1. By
Lemma 4.3.9 we get the estimate

dimVG(m) ≥
[ (m− n+ 1)2

4

]
for any m ≥ n+ 1 (5.46)

for the dimensions of the spaces of paramodular vectors in G(ν1/2π, ν−1/2σ).
Since [m− n+ 2

2

]
+

[ (m− n+ 1)2

4

]
=

[ (m− n+ 2)2

4

]
is the full dimension of the space of K(pm) invariant vectors in the induced
representation ν1/2π o ν−1/2σ by Theorem 5.2.2, the estimates in (5.45) and
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(5.46) must actually be equalities. By Lemma 5.5.6 we find that the vectors
θdηef0, d, e ≥ 0, d+2e = m−n, span the space of K(pm) invariant vectors. In
particular, the Oldforms Principle holds for Saito–Kurokawa representations.

Lemma 5.5.7. Let ξ and σ be characters of F× such that such that ξ2 = σ2 =
1 and ξ 6= 1. Let V be the space of the Vd type representation L(νξ, ξoν−1/2σ).
If ξ and σ are unramified, then

dimV (n) =
1 + (−1)n

2
for all n ≥ 0.

If ξ or σ are ramified, then the Vd type representation L(νξ, ξ o ν−1/2σ) has
no paramodular vectors.

Proof. We have by (2.10)

ν1/2ξ1GL(2) o ν−1/2ξσ = Vb + Vd

= L(ν1/2ξStGL(2), ν
−1/2σ) + L(νξ, ξ o ν−1/2σ).

We have by Proposition 5.5.1,

Q(ν1/2ξStGL(2), ν
−1/2σ) = L(ν1/2ξStGL(2), ν

−1/2σ).

Moreover, Vd is also a constituent of ν1/2ξ1GL(2) o ν−1/2σ; see (2.10). The
last statement of the lemma therefore follows from Theorem 5.2.2 iv). Assume
that ξ and σ are unramified. Then, by Theorem 5.2.2 iii), the dimension of the
space of K(pm) invariant vectors in ν1/2ξ1GL(2) o ξν−1/2σ is

[m
2

]
+1, for any

m ≥ 0. By what we proved above, the dimension of the space of K(pm) invari-
ant vectors in the Saito–Kurokawa representation Q(ν1/2ξStGL(2), ν

−1/2σ) is[m+ 1
2

]
. Since [m

2

]
+ 1−

[m+ 1
2

]
=

1 + (−1)m

2
,

the assertion follows. ut

Atkin–Lehner Eigenvalues

Saito–Kurokawa representations exhibit a special behavior with respect to
Atkin–Lehner involutions.

Proposition 5.5.8. Let π be an irreducible, admissible, infinite-dimensional
representation of GL(2, F ) with trivial central character of level n such that
π � ν3/2 × ν−3/2.

i) The Atkin–Lehner eigenvalue of the newform of level n of the Saito–
Kurokawa representation Q(ν1/2π, ν−1/2) (type IIb, Vb, VIc or XIb) is
ε(1/2, π).
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ii) The Atkin–Lehner eigenvalue of the newform of level n+ 1 of the generic
constituent G(ν1/2π, ν−1/2) of ν1/2π o ν−1/2 (type IIa, Va, VIa or XIa)
is −ε(1/2, π).

Proof. i) As above, we shall realize Q(ν1/2π, ν−1/2) as a subrepresentation
of V−1/2. By (5.38), the newform is supported on P (F )K(pn) and is on this
double coset given by

f0(
[
A ∗
uA′

]
k) = |u−1 det(A)| v0 (k ∈ K(pn)),

where v0 is the newform in the space of π. It is therefore enough to compute
(unf0)(1), where un is the Atkin–Lehner element. It can be written as

un =


1
−1

$n

−$n

 =


1

−$n

1
−$n




$−n

1
1

$n

 .
Consequently

(unf0)(1) = f0(un) = f0(


1

−$n

1
−$n

) = π(
[

1
−$n

]
)v0.

But
[

1
−$n

]
is an Atkin–Lehner element of level n for the GL(2) represen-

tation π. The newform v0 has eigenvalue ε(1/2, π) under the action of this
element.

ii) We realize the generic constituent G(ν1/2π, ν−1/2) as a subrepresen-
tation of V1/2. Let f0 ∈ V1/2 be the newform of level n in the full induced
representation (which is not an element of G(ν1/2π, ν−1/2)). As in part i) we
compute unf0 = ε(1/2, π)f0. By the remarks following the proof of Proposi-
tion 5.5.5 ii), the newform of level n+1 in δ(ν1/2π, ν−1/2) is given by θf0−θ′f0.
We compute

un+1(θf0 − θ′f0) = un+1(θf0 − un+1θunf0)
= un+1θf0 − θunf0
= θ′unf0 − θunf0
= ε(1/2, π)(θ′f0 − θf0),

proving our assertion. ut

Note: These results on Atkin–Lehner eigenvalues are expected, because
the L-parameter of Q(ν1/2π, ν−1/2) is ϕπ ⊕ ϕ1 and the L-parameter of
δ(ν1/2π, ν−1/2) is ϕπ ⊕ ϕSt.
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Summary

We summarize the properties of Saito–Kurokawa representations.

Theorem 5.5.9. Let π be an irreducible, admissible, infinite-dimensional rep-
resentation of GL(2, F ) with trivial central character of level n such that
π � ν3/2 × ν−3/2, and let σ be a character of F× such that σ2 = 1. Then
Q(ν1/2π, ν−1/2σ) has no paramodular vectors if σ is ramified. If σ is unram-
ified, we have the following properties.

i) The minimal level of Q(ν1/2π, ν−1/2σ) is n.
ii) The dimension of the space of paramodular vectors of level m is [m−n+2

2 ],
for any m ≥ n.

iii) A basis for the space of paramodular vectors of level m is provided by the
vectors θdηef0, d, e ≥ 0, d+ 2e = m− n, where f0 is the unique newform
of level n.

If σ = 1, we have furthermore:

iv) The operator θ − θ′ is zero on the full space of paramodular vectors. In
other words, θ commutes with Atkin–Lehner involutions.

v) Every paramodular vector is an Atkin–Lehner eigenvector with eigenvalue
ε(1/2, π).

If σ is the non-trivial, unramified, quadratic character, then the operator θ+θ′

is zero on the full space of paramodular vectors.

Proof. All the statements have been proved earlier in this section. As for iv)
and v), note that we need only verify these statements on the newform, since
we know that the Oldforms Principle holds for Saito–Kurokawa representa-
tions. ut

Thus we see that the map π 7→ Q(ν1/2π, ν−1/2) provides a level-preserving
and Atkin–Lehner preserving local Saito–Kurokawa lifting. We saw in the
proof of Lemma 5.5.6 that there is a natural map from the space of paramod-
ular vectors in Q(ν1/2π, ν−1/2) to the space of Γ1 vectors in π. The image is
precisely the local analogue of the “certain space” of Skoruppa and Zagier;
see [SZ].

Type IVb

Let σ be a character of F× such that σ2 = 1. We shall now treat the rep-
resentation L(ν2, ν−1σStGSp(2)) of type IVb, which is a subrepresentation
of ν3/21GL(2) o ν−3/2σ. The quotient is σ1GSp(4). It follows from Theorem
5.2.2 iv) that the full induced representation, and therefore also IVb, has no
paramodular vectors if σ is ramified. We shall therefore assume that σ = 1. For
a complex parameter s consider the induced representation νs1GL(2) o ν−s.
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Its standard space Vs consists of functions f : GSp(4, F ) → C with the
transformation property

f(
[
A ∗
uA′

]
g) = |u−1 det(A)|3/2+sf(g)

for all g ∈ GSp(4, F ). A paramodular vector of level m is determined by its
values on 1 and Mi, 1 ≤ i ≤ m

2 . These values can be prescribed arbitrarily, so
that dimVs(m) = [m+2

2 ]. It follows that the space of K(pm) invariant vectors
in L(ν2, ν−1StGSp(2)) has dimension [m2 ]. In particular, the minimal level is
p2. We see that the growth of the dimensions is “Saito–Kurokawa like”, even
though IVb is not a Saito–Kurokawa representation.

Lemma 5.5.10. Let s ∈ C. We identify the space Vs(m) with C[(m+2)/2] via
evaluating functions at 1 and Mi, 1 ≤ i ≤ m

2 . The operator θ : Vs(0) →
Vs(1) is given by multiplication with the number q(q1/2+s + 1). The operator

θ : Vs(1) → Vs(2) is represented by the matrix
[
q(q1/2+s + 1)

q + 1

]
. If m ≥ 4 is

even, then the operator θ : Vs(m−1)→ Vs(m) is represented by the m+2
2 × m

2
matrix 

q(q1/2+s + 1)
q1+(2−m)(3/2+s) 1

q5/2+s
. . .
. . . 1

q5/2+s 1
q3/2+s(q + 1)


.

If m ≥ 3 is odd, then θ : Vs(m−1)→ Vs(m) is represented by the m+1
2 ×

m+1
2

matrix 

q(q1/2+s + 1)
q1+(2−m)(3/2+s) 1

q5/2+s
. . .
. . . 1

q5/2+s 1

 .

The operator η : Vs(m−2)→ Vs(m) is represented by the [m+2
2 ]× [m2 ] matrix

q3/2+s

q(3−m)(3/2+s) 0

q3/2+s
. . .
. . . 0

q3/2+s

 .

Proof. These are straightforward computations using the formulas in the proof
of Lemma 5.5.3. ut
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Proposition 5.5.11. Let f2 be the newform of level 2 in L(ν2, ν−1StGSp(2)).
Then, for any m ≥ 2, the vectors θdηef2, d, e ≥ 0, d+2e = m−2, are linearly
independent and span the space of K(pm)-invariant vectors. In particular, the
Oldforms Principle holds for representations of type IVb.

Proof. Since we already know that the dimension of the space of K(pm)-
invariant vectors is [m2 ], we just have to prove that this space is spanned by
the vectors θdηef2 with d + 2e = m − 2. We realize L(ν2, ν−1StGSp(2)) as a
quotient of V−3/2 and use the matrix representations of Lemma 5.5.10. For
m ≥ 3 consider the operators η and θ2 from Vs(m − 2) to Vs(m). Adding
the last column of the matrix for η to the matrix for θ2 yields an invertible
matrix, i.e., the image of η and of θ2 spans all of Vs(m). The same is then
true for η and θ2 considered as operators

Vs(m− 2)/1GSp(4) −→ Vs(m)/1GSp(4).

But these are the spaces of paramodular vectors of level m − 2 resp. m in
L(ν2, ν−1StGSp(2)), proving our assertion. ut

Type VId

Now consider the representation L(ν, 1F× o ν−1/2σ) of type VId. It is a quo-
tient of the degenerate principal series representation ν1/21GL(2) o ν−1/2σ,
which by Theorem 5.2.2 iv) implies that it has no paramodular vectors if σ is
ramified. Hence assume that σ is trivial. Then ν1/21GL(2) o ν−1/2 has a non-
zero GSp(4, o) invariant vector. The other constituent of ν1/21GL(2) o ν−1/2

is the tempered τ(T, ν−1/2). We know by Theorem 3.4.3 that τ(T, ν−1/2) has
no paramodular vectors. Therefore the structure of paramodular vectors in
ν1/21GL(2) o ν−1/2 and in L(ν, 1F× o ν−1/2) is the same.

Proposition 5.5.12. Let f0 be the newform of level 0 in L(ν, 1F× o ν−1/2).
Then, for any m ≥ 0, the vectors θdηef0, d, e ≥ 0, d + 2e = m, are linearly
independent and span the space of K(pm) invariant vectors. In particular, the
Oldforms Principle holds for representations of type VId.

Proof. The argument is the same as in the proof of Proposition 5.5.11. ut

We see that VId is another representation with a Saito–Kurokawa like
structure of paramodular vectors, without actually being a Saito–Kurokawa
representation.

Characterization of Saito–Kurokawa Representations

Proposition 5.5.13. Let (τ, V ) be an irreducible, admissible representation
of GSp(4, F ) with trivial central character that has non-zero paramodular vec-
tors. The following statements are equivalent.
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i) There exists a non-zero paramodular vector f ∈ V such that θf = θ′f .
ii) For all paramodular vectors f ∈ V we have θf = θ′f .
iii) θ commutes with Atkin–Lehner involutions on the space of paramodular

vectors in V .
iv) τ is one of the following representations.
• 1GSp(4) (type IVd).
• L(ν2, ν−1StGSp(2)) (type IVb).
• L(νξ, ξ o ν−1/2) with unramified ξ of order 2 (type Vd).
• L(ν, 1F× o ν−1/2) (type VId).
• Q(ν1/2π, ν−1/2) with π an irreducible, admissible, infinite-dimensio-

nal representation of GL(2, F ) with trivial central character such that
π � ν3/2 × ν−3/2 (type IIb, Vb, VIc or XIb).

If there exists a non-zero paramodular vector f ∈ V such that θf and θ′f are
linearly dependent, then necessarily θf = θ′f or θf = −θ′f . In the latter case
π is a twist of one of the representations in iv) with the unique non-trivial,
unramified, quadratic character of F×.

Proof: Assume there exists a non-zero paramodular vector f such that θf
and θ′f are linearly dependent. We claim that τ is not generic; suppose other-
wise. By the η Principle, Theorem 4.3.7, we may assume that Z(s, f) 6= 0. By
Proposition 4.1.1, Z(s, θf) = q−s+3/2Z(s, f) and Z(s, θ′f) = qZ(s, f). Since
θf and θ′f are linearly dependent and Z(s, f) 6= 0, the holomorphic func-
tions q and q−s+3/2 are linearly dependent, a contraction. Since non-generic
supercuspidals have no paramodular vectors by Theorem 3.4.3, τ must be a
constituent of an induced representation. It cannot be of type IIIb by Propo-
sition 5.3.4. It cannot be of type IVc by Proposition 5.3.5. It cannot be of
type VIb, VIIIb or IXb since these representations do not have paramodular
vectors. Hence τ must be of one of the types listed under iv). In each case we
have verified before that the representation in question has no paramodular
vectors if it is twisted with a ramified character (for type Vd, the quadratic
character ξ must also be unramified in order for paramodular vectors to exist).
Hence π is one of the representations in iv), or an unramified twist of such a
representation. The condition of trivial central character forces the twisting
character to be quadratic.

Let f0 be the unique newform for any of the representations listed in iv).
Then we can easily verify that θf0 = θ′f0. This is trivial for 1GSp(4) and type
Vd (which has paramodular dimensions 1, 0, 1, 0, . . .). For VId it is a very
easy computation. For the Saito–Kurokawa representations we verified it in
Lemma 5.5.3 (with s = −1/2). Now for each of these representations we also
verified the Oldforms Principle. Hence, if θ − θ′ annihilates the newform, it
annihilates all paramodular vectors.

If τ is a representation for which θv = θ′v holds for paramodular vectors
v, and if σ is the unique non-trivial, unramified, quadratic character, then the
twist στ has the property that θv = −θ′v on paramodular vectors v. This is
immediate from the explicit formulas in Lemma 3.2.2.
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The arguments given so far prove the last statements of the proposition,
as well as the implications i) ⇒ iv) ⇒ ii). The implications ii) ⇒ i) and ii) ⇔
iii) are trivial. ut

5.6 Summary

The following theorem summarizes our results on new- and oldforms for non-
supercuspidal representations proved so far.

Theorem 5.6.1. Let (π, V ) be an irreducible, admissible, non-supercuspidal
representation of GSp(4, F ) with trivial central character. For any non-
negative integer m let V (m) be the space of K(pm)-invariant vectors.

i) The dimension dimV (m) is given as in Table A.12 on page 291.
ii) If π is paramodular, and if Nπ is the minimal paramodular level, then

dimV (Nπ) = 1.
iii) If π is generic, then π is paramodular. Generic representations are char-

acterized by the formula

dimV (m) =
[ (m−Nπ + 2)2

4

]
for m ≥ Nπ. (5.47)

iv) The Oldforms Principle holds for π: Every oldform can be obtained by
repeatedly applying the level raising operators θ, θ′ and η to the newform
and taking linear combinations.

Proof. We know from Theorem 4.4.1 that generic representations are para-
modular. This follows also from the results of the current chapter, as the
following arguments will show. For type I representations we obtain formula
(5.47) from Corollary 5.2.3; for type IIa we obtain it from Theorem 5.2.2 ii);
for type IIIa we obtain it from Theorem 5.4.2 ii). The dimension formulas for
types IIb and IIIb follow from Theorem 5.2.2 iii), iv) and Theorem 5.4.2 iii),
iv), respectively.

The dimensions for group IV are easily obtained since this group contains
the trivial representation. We know from (2.9) how the full induced represen-
tation ν2 × ν o ν−3/2σ decomposes into irreducible constituents. We further
know the dimensions for ν3/21GL(2) o ν−3/2σ from Theorem 5.2.2, and the
dimensions for ν2 o ν−1σ1GSp(2) from Theorem 5.4.2. Hence we obtain the
dimensions for IVb and IVc. Subtracting everything from the dimensions of
the full induced representation (Corollary 5.2.3), we get the dimensions for
IVa. In particular, (5.47) holds for twists of the Steinberg representation.

The dimensions for groups V and VI are obtained similarly. For group V,
the starting point is Lemma 5.5.7, which gives the dimensions for Vd. The
rest follows from (2.10) and Theorem 5.2.2. For group VI we use (2.11) and
the fact that VIb has no paramodular vectors; see Theorem 3.4.3.
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The results for the generic group VII representations are immediate from
Theorem 5.4.2 ii). The same theorem, together with Theorem 3.4.3, give the
dimensions for groups VIII and IX.

Theorem 5.2.2 ii) gives the dimensions for the generic group X representa-
tions. The dimensions for XIa and XIb in the unramified case were obtained
in Sect. 5.5. In the ramified case they follow from Theorem 3.4.3. The proofs
of i), ii), and iii) are now complete.

iv) The Oldforms Principle holds for generic representations by the di-
mension formula (5.47) together with Proposition 4.3.9. It holds for represen-
tations of type IIb, Vb,c, VIc and XIb by iii) of Theorem 5.5.9. It holds for
representations of type IIIb by Proposition 5.3.4, for type IVb by Proposition
5.5.11, for type IVc by Proposition 5.3.5, for type Vd by Lemma 5.5.7, and
for type VId by Proposition 5.5.12. It trivially holds for type IVd, the one-
dimensional representations. Representations of type VIb, VIIIb and XIb are
never paramodular by Theorem 3.4.3. This covers all cases. ut

5.7 Atkin–Lehner Eigenvalues

In this final section we prove part of one of our main results, Theorem 7.5.9.
Let π be an irreducible, admissible, non-supercuspidal, paramodular repre-
sentation of GSp(4, F ) with trivial central character, and let ϕπ be the L-
parameter attached to π as in Sect. 2.4. By ii) of Theorem 5.6.1, if Nπ is
the minimal paramodular level of π, then dimV (Nπ) = 1. Let v ∈ V (Nπ)
be non-zero. Since V (Nπ) is one-dimensional, we have π(uNπ )v = επv where
uNπ is the Atkin–Lehner element as in (2.2). We call επ the Atkin–Lehner
eigenvalue of v. We will prove that

ε(s, ϕπ) = επq
−Nπ(s−1/2).

In other words, the two invariants Nπ and επ of a newform in π determine
the ε-factor of the L-parameter of π.

The first step is to compute all the Atkin–Lehner eigenvalues of the
paramodular newforms in non-supercuspidal representations. We recall some
facts from the GL(2) theory. Let (π, V ) be an irreducible, admissible, infinite-
dimensional representation of GL(2, F ) with trivial central character. Let n
be the least positive integer such that V contains a non-zero vector v invari-

ant under Γ0(pn) = {
[
a b
c d

]
∈ GL(2, o) : c ∈ pn}. Then the dimension of

the space of Γ0(pn) invariant vectors is 1. The Atkin–Lehner element
[

1
$n

]
acts on this space by multiplication with a sign, and this sign is given by the
value of the ε-factor of π at 1/2,

π(un)v = ε(1/2, π)v. (5.48)

A proof of this fact can be found in [Sch1].
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Lemma 5.7.1. i) Let σ be a character of F×, and let π be an irreducible,
admissible, infinite-dimensional representation of GL(2, F ). Assume that
ωπσ

2 = 1, so that the induced representation π o σ has trivial central
character. Then the minimal paramodular level of π o σ is n = a(σπ) +
2a(σ), and dimV (n) = 1. The Atkin–Lehner element un acts on V (n)
with eigenvalue σ(−1)ε(1/2, σπ).

ii) Let χ be a character of F×, and let π be an irreducible, admissible, infinite-
dimensional representation of GL(2, F ). Assume that ωπχ = 1, so that
the induced representation χ o π has trivial central character. Then the
minimal paramodular level of χo π is n = 2a(π), and dimV (n) = 1. The
Atkin–Lehner element un acts on V (n) with eigenvalue χ(−1).

Proof. The assertions about the minimal level and the fact that dimV (n) =
1 have already been proven in Theorems 5.2.2 and 5.4.2. In the proof of
these theorems, an explicit form of a non-zero K(pn)-invariant vector in the
standard models of the induced representations was given. In the Siegel case
π o σ, a K(pn)-invariant vector f is supported on P (F )Ma(σ)K(pn), and in
the Klingen case χ o π such a vector is supported on Q(F )La(π)K(pn); see
(5.5) for notation. We shall carry out the calculation only in the Siegel case.
In this case f(Ma(σ)) is the local newform in the representation space of π.
Since

un =


1
−1

$n

−$n

 =


1

$n

1
$n




−$−n

1
−1

$n

 ,
we have

(π(un)f)(Ma(σ)) = f(Ma(σ)un)

= f(Ma(σ)


1

$n

1
$n

)

= f(


1

$n

1
$n

Ma(σ))

= σ(−1)(σπ)(
[

1
$n

]
)f(Ma(σ))

= σ(−1)ε(1/2, σπ)f(Ma(σ)).

For the last equality see (5.48); note that σπ has trivial central character.
This concludes the proof. ut
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Theorem 5.7.2. Let (π, V ) be an irreducible, admissible, non-supercuspidal,
paramodular representation of GSp(4, F ) with trivial central character. Let Nπ
be the minimal paramodular level; by ii) of Theorem 5.6.1, dimV (Nπ) = 1.
Let επ be the eigenvalue of the Atkin–Lehner involution π(uNπ ) on V (Nπ).
Then επ is as given in Table A.12 in the appendix.

Proof. The entry for type I representations follows from Lemma 5.7.1 i) with
π = χ1 × χ2. The same lemma gives the Atkin–Lehner eigenvalue for type
IIa representations. See Proposition 5.5.8 i) for type IIb. Eigenvalues for type
IIIa representations follow from Lemma 5.7.1 ii). By Theorem 3.4.3, type
IIIb representations are not paramodular if σ is ramified. If σ is unramified,
then the trivial central character condition χσ2 = 1 forces χ also to be un-
ramified. Hence the representation has a GSp(4, o) invariant vector, whose
Atkin–Lehner eigenvalue is one.

Consider representations of type IV, V or VI. If the inducing characters
are unramified, so that the representation in question is Iwahori-spherical, its
Atkin–Lehner eigenvalue can easily be determined by direct computations in
the induced models. See Theorem 3.2.9 and Table A.13.

By Theorem 3.4.3, the representations IVb,c,d are not paramodular if σ
is ramified. In view of the middle row of Table (2.9), we can use Lemma 5.7.1
ii) to compute the eigenvalue of σStGSp(4). If σ is unramified, all the group IV
representations are Iwahori-spherical.

The eigenvalues for the Saito–Kurokawa representations Vb,c were deter-
mined in Proposition 5.5.8. Making use of Table (2.10) and Theorem 3.4.3,
one can determine the eigenvalues for Va, except in the Iwahori-spherical case,
where they follow from direct computations.

Since VIb is never paramodular by Theorem 3.4.3, one can use the mid-
dle row of Table (2.11) and Lemma 5.7.1 ii) to compute the Atkin–Lehner
eigenvalue of VIa. Representations of type VIc are Saito–Kurokawa and were
treated in Proposition 5.5.8. Representations of type VId are either not
paramodular or Iwahori-spherical.

For group VII we can use Lemma 5.7.1 ii). For groups VIII and IX we
can use the same lemma, together with the fact that VIIIb and IXb are never
paramodular (Theorem 3.4.3).

Eigenvalues for group X follow from Lemma 5.7.1 i). The same lemma can
be used for group XIa if σ is ramified, since in this case XIb is not paramodular
by Theorem 3.4.3. If σ is unramified, the eigenvalues for both XIa and XIb
follow from Proposition 5.5.8. ut

Theorem 5.7.3. Let (π, V ) be an irreducible, admissible, non-supercuspidal,
paramodular representation of GSp(4, F ) with trivial central character. Let
ϕπ : W ′

F → GSp(4,C) be the L-parameter assigned to π as in Sect. 2.4. Let
Nπ be the minimal paramodular level of π, and let επ be the eigenvalue of the
Atkin–Lehner involution on the one-dimensional space V (Nπ). Then

ε(s, ϕπ) = επq
−Nπ(s−1/2).
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Proof. This follows by comparing Table A.12 and Table A.9. ut

For completeness we also give the Atkin–Lehner eigenvalues on spaces of
oldforms. Let Nπ be the minimal level of an irreducible, admissible, paramod-
ular representation (π, V ) of GSp(4, F ) with trivial central character. For any
n ≥ Nπ let V±(n) be the subspace of vectors v ∈ V (n) such that π(un)v = ±v.
Let ε ∈ ±1 be the Atkin–Lehner eigenvalue of the newform. The following ta-
ble gives the dimensions of the spaces Vε(n) and V−ε(n) for each n ≥ Nπ.

dimV (n) dimVε(n) dimV−ε(n)[ (n−Nπ+2)2

4

]
1
2 (

[
n−Nπ

2

]
+ 1)(

[
n−Nπ

2

]
+ 2) 1

2

[
n−Nπ+1

2

]
(
[
n−Nπ+1

2

]
+ 1)[

n−Nπ+2
2

] [
n−Nπ+2

2

]
0

n−Nπ + 1
[
n−Nπ+2

2

] [
n−Nπ+1

2

]
(5.49)

The second row of the table applies to representations for which dimV (n)
is given by the formula

[ (n−Nπ+2)2

4

]
. These are exactly the generic representa-

tions; see Table A.12 (the proof for supercuspidal representations will only be
complete after we proved uniqueness at the minimal level in Theorem 7.5.1).
To prove these formulas, note that, by Proposition 4.3.9, V (n) is spanned by
the linearly independent vectors

(θ + θ′)i(θ − θ′)jηkv, i+ j + 2k = n−Nπ,

where v ∈ V (Nπ) is non-zero. The operators η and θ + θ′ preserve Atkin–
Lehner eigenvalues, while θ − θ′ changes them. Hence Vε(n) is spanned by
the vectors (θ+ θ′)i(θ− θ′)jηkv with even j, and V−ε(n) is spanned by those
vectors with odd j. It is easy to count the possibilities.

The third row in table (5.49) applies to Saito–Kurokawa type represen-
tations (IIb, IVb, Vb, Vc, VIc, VId, XIb). In these cases the operators θ
and η are enough to generate the spaces of oldforms, and they both preserve
Atkin–Lehner eigenvalues. See Proposition 5.5.13 for proofs.

The last row in table (5.49) applies to representations of type IIIb and
IVc. In these cases the two operators θ and θ′ suffice to generate all oldforms.
See Sect. 5.3 for proofs.

The only paramodular representations missing from table (5.49) are the
unramified twists of the trivial representation and the paramodular represen-
tations of type Vd. In the latter case, the dimensions of the spaces V (n) are
1, 0, 1, 0, . . . , and all Atkin–Lehner eigenvalues are the same.
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Hecke Operators

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ) with triv-
ial central character. Assume that π is paramodular. In the previous chapter
we proved that, for non-supercuspidal π, the space V (Nπ) is one-dimensional,
where Nπ is the minimal paramodular level; we will eventually prove this for
all paramodular representations. Thanks to uniqueness, any linear operator
on V (Nπ) will act by a scalar, and thus define an invariant. One example will
be the Atkin–Lehner eigenvalue επ. In this chapter we introduce the paramod-
ular Hecke algebra and study the action of two of its elements on V (n). When
n = Nπ, then the eigenvalues of these two operators will define two more
important invariants λπ and µπ. As we will show in the next chapter, Nπ, επ,
λπ and µπ will determine the relevant L- and ε-factors of the representation.
Besides ultimately defining the invariants λπ and µπ, our two Hecke operators
will in fact be an important tool for proving uniqueness at the minimal level
and other results.

In the first three sections of this chapter we introduce the two relevant
Hecke operators and study their algebraic properties as operators on V (n).
These properties are proved in the context of arbitrary smooth representa-
tions for which the center acts trivially. Although the context is general, these
calculations are rather long. Most of the remainder of this chapter is devoted
to the computation of Hecke eigenvalues in non-supercuspidal representations.
All non-supercuspidal representations except those of type VII, VIII and IX
are treated; the eigenvalues for these omitted cases and for supercuspidal rep-
resentations will be computed in Theorem 7.5.2 in the next chapter. Finally, in
the last section we prove that, if the representation is unitary, our two Hecke
operators are self-adjoint. Along with other results this implies that the Hecke
operators are simultaneously diagonalizable at the minimal level. This will be
an important ingredient in the proof of uniqueness at the minimal level for
supercuspidal representations; see Theorem 7.5.1.
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6.1 Two Hecke Operators

Let K be an open-compact subgroup of GSp(4, F ). We denote by H(K) the
Hecke algebra of K, i.e., the vector space of left and right K-invariant, com-
pactly supported functions on GSp(4, F ), with the product given by the con-
volution

(T · T ′)(g) =
∫

GSp(4,F )

T (gh−1)T ′(h) dh.

Here we choose the Haar measure such that vol(K) = 1.
Assume that (π, V ) is a smooth representation of GSp(4, F ) with trivial

central character. Then H(K) acts on the space V K of K-invariant vectors
by

Tv =
∫

GSp(4,F )

T (g)π(g)v dg.

Again, we fix the Haar measure for which K has volume 1. If T is the char-
acteristic function of KhK, and if KhK =

⊔
i hiK with representatives hi,

then
Tv =

∑
i

π(hi)v. (6.1)

An alternative formula is

Tv = vol(K ∩ hKh−1)−1

∫
K

π(k)π(h)v dk. (6.2)

To see this, note that we may assume that the hi are chosen so that hih−1 ∈ K.
It is easy to verify that K =

⊔
i hih

−1(K ∩ hKh−1). On the one hand, we
have (6.1); on the other hand, we have∫

K

π(k)π(h)v dh = vol(K ∩ hKh−1)
∑
i

π(hih−1)(π(h)v)

= vol(K ∩ hKh−1)
∑
i

π(hi)v

for v ∈ V K . This proves (6.2).
Now fix a non-negative integer n ≥ 0 and consider the Hecke algebra

H(K(pn)) for the paramodular group of level pn. The elements of interest for
us are

T0,1 = characteristic function of K(pn)


$
$

1
1

K(pn) (6.3)

and
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T1,0 = characteristic function of K(pn)


$2

$
$

1

K(pn). (6.4)

In general these two elements do not commute in H(K(pn)), but see Proposi-
tion 6.2.1.

The Unramified Case

LetK = K(p0) = GSp(4, o). In this case we have the unramified Hecke algebra
H(K), which is known to be commutative. The relevant coset decompositions
for the two Hecke algebra elements defined in (6.3) and (6.4) are as follows.
For T0,1, we have

K


$
$

1
1

K =
⊔

x,y,z∈o/p


1 y z

1 x y
1

1



$
$

1
1

K

t
⊔

x,z∈o/p


1 x

1
1 −x

1




1 z
1

1
1



$

1
$

1

K

t
⊔

x∈o/p


1

1 x
1

1




1
$

1
$

K

t


1

1
$
$

K. (6.5)

For T1,0, we have

K


$2

$
$

1

K =
⊔

z∈o/p2

x,y∈o/p


1 x

1
1 −x

1




1 y z
1 y

1
1



$2

$
$

1

K

t
⊔
c∈o/p

d∈o/p2


1 c

1 d c
1

1



$
$2

1
$

K

t
⊔

x∈o/p


1 x

1
1 −x

1



$

1
$2

$

K
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t


1
$
$
$2

K

t
⊔

d∈(o/p)×


1

1 d$−1

1
1



$
$
$
$

K

t
⊔

u∈(o/p)×

λ∈o/p


1 λu$−1 u$−1

1 λ2u$−1 λu$−1

1
1



$
$
$
$

K. (6.6)

We sketch a proof of these decompositions. Computations show that the
coset representatives are contained in the respective double cosets, and that
they are disjoint. Thus it suffices to know that the volume of a double coset is
equal to the number of cosets in the asserted decomposition; we assume the
volume of K is 1. For any g ∈ GSp(4, F ), the volume of KgK equals the index
of g−1Kg ∩K in K. For g = diag($,$, 1, 1), we have g−1Kg ∩K = Si(p).
By Lemma 5.1.1, the index of Si(p) in GSp(4, o) is q3 + q2 + q + 1; this is
the number of coset in the decomposition (6.5). For g = diag($2, $,$, 1), we
have

g−1Kg ∩K = K ∩


o o o o
p o o o
p o o o
p2 p p o

 .
This group has index q in Kl(p), and, by Lemma 3.3.3, the index of Kl(p) in
GSp(4, o) is q3+q2+q+1. Hence the volume of KgK equals q(q3+q2+q+1),
which is the number of cosets in the decomposition (6.6).

Hecke Operators for Level n ≥ 1

Now we present coset decompositions for T0,1 and T1,0 in the case n ≥
1. We begin with a preliminary lemma about double cosets of the form
Kl(pn)gK(pn).

Lemma 6.1.1. We have the following disjoint decompositions.

i) For any n ≥ 1,

Kl(pn)


$
$

1
1

K(pn) =
⊔

x,y∈o/p


1 y

1 x y
1

1



$
$

1
1

K(pn)
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∪
⊔

z∈o/p


1 z

1
1 −z

1



$

1
$

1

K(pn).

ii) For any n ≥ 2,

Kl(pn)


$2

$
$

1

K(pn)

=
⊔

x,y∈o/p


1 x

1
1 −x

1




1 y
1 y

1
1



$2

$
$

1

K(pn).

For n = 1,

Kl(p)


$2

$
$

1

K(p)

=
⊔

x,y,z∈o/p


1 x

1
1 −x

1




1 y z
1 y

1
1



$2

$
$

1

K(p).

Proof. Since the argument is similar in both cases, we shall prove only i).
Using the Iwahori factorization (2.7) we compute

Kl(pn)


$
$

1
1

K(pn)

=


1 o o o

1 o
1 o

1




o×

o o
o o

o×




1
pn 1
pn 1
pn pn pn 1



$
$

1
1

K(pn)

=


1 o o o

1 o
1 o

1




o×

o o
o o

o×



$
$

1
1

K(pn)

=


1 o o o

1 o
1 o

1




1
1 o

1
1



$
$

1
1

K(pn) ∪


1 o o o

1 o
1 o

1

 s2

$
$

1
1

K(pn)
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=


1 o

1 o
1

1




1
1 o

1
1



$
$

1
1

K(pn) ∪


1 o o o

1 o
1 o

1



$

1
$

1

K(pn)

=


1 o

1 o o
1

1



$
$

1
1

K(pn) ∪


1 o

1
1 o

1



$

1
$

1

K(pn)

=
⋃

x,y∈o/p


1 y

1 x y
1

1



$
$

1
1

K(pn) ∪
⋃

z∈o/p


1 z

1
1 −z

1



$

1
$

1

K(pn).

It is easy to see that this decomposition is disjoint. ut

Lemma 6.1.2. We have the following coset decompositions.

i) For any n ≥ 1,

K(pn)


$
$

1
1

K(pn) =
⊔

x,y,z∈o/p


1 y z$−n

1 x y
1

1



$
$

1
1

K(pn)

t
⊔

x,z∈o/p


1 x z$−n

1
1 −x

1



$

1
$

1

K(pn)

t
⊔

x,y∈o/p

tn


1 y

1 x y
1

1



$
$

1
1

K(pn)

t
⊔

x∈o/p

tn


1 x

1
1 −x

1



$

1
$

1

K(pn).

ii) For any n ≥ 1,

K(pn)


$2

$
$

1

K(pn)

=
⊔

x,y∈o/p

⊔
z∈o/p2


1 x

1
1 −x

1




1 y z$−n

1 y
1

1



$2

$
$

1

K(pn)
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t
⊔

x,y,z∈o/p

tn


1 x

1
1 −x

1




1 y z$−n+1

1 y
1

1



$2

$
$

1

K(pn).

Here, tn is the element defined in (2.3).

Proof. We shall prove only i), the argument for ii) being similar. It is easy
to see that all the listed cosets are disjoint. To prove that they exhaust the
double coset, note that

K(pn) =


1 p−n

1
1

1

Kl(pn) ∪ tn


1 p−n+1

1
1

1

Kl(pn),

by Lemma 3.3.1. It follows that

K(pn)


$
$

1
1

K(pn) =


1 p−n

1
1

1

Kl(pn)


$
$

1
1

K(pn)

∪ tn


1 p−n+1

1
1

1

Kl(pn)


$
$

1
1

K(pn).

Now we substitute the cosets from Lemma 6.1.1 and obtain a decomposition
as asserted. ut

Dualizing and Twisting

As before, let (π, V ) be a smooth representation of GSp(4, F ) such that the
center of GSp(4, F ) acts trivially. On the space V (n) we define the dual Hecke
operators

T ∗0,1 = un ◦ T0,1 ◦ u−1
n and T ∗1,0 = un ◦ T1,0 ◦ u−1

n .

These endomorphisms are also induced by elements of H(K(pn)). Namely, if T
is the endomorphism induced by the characteristic function of K(pn)gK(pn),
then T ∗ is the endomorphism induced by the characteristic function of the
double coset u−1

n K(pn)gK(pn)un = K(pn)u−1
n gunK(pn). Hence

T ∗0,1 =
endomorphism induced by

the characteristic function of K(pn)


1

1
$
$

K(pn)
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and

T ∗1,0 =
endomorphism induced by

the characteristic function of K(pn)


$

1
$2

$

K(pn).

Since K(pn) contains the element
$−n

1
1

$n

 ,
we see that T0,1 = T ∗0,1: The Hecke operator T0,1 is self-dual. This is not true,
however, for T1,0, unless n = 0. Conjugating the cosets in Lemma 6.1.2 ii)
by un we see that T ∗1,0 is the endomorphism induced by the characteristic
function of

K(pn)


$

1
$2

$

K(pn)

=
⊔

x,y∈o/p

⊔
z∈o/p2


1 x

1
1 −x

1




1
1

y$n z 1
y$n 1



$

1
$2

$

K(pn)

t
⊔

x,y,z∈o/p


1 x

1 x
1

1




1
y$n 1 z$

1
−y$ 1



$
$2

1
$

K(pn).

Next, let ξ be the unique non-trivial, unramified, quadratic character of F×.
Then the structure of paramodular vectors in the twist ξπ is the same as
for π. In fact, if π and ξπ are both realized on the same space V , then the
space V (n) of K(pn)-invariant vectors is the same for both representations.
Each element in the double coset defining T0,1 has multiplier in $o×. Hence,
for the representation ξπ, the endomorphism T0,1 of V (n) differs by a sign
from the endomorphism T0,1 for π. The situation is different for T1,0: Since
the elements of the double coset defining this Hecke operator have multiplier
in $2o×, the endomorphism T1,0 of V (n) is the same for both π and ξπ. In
short, the Hecke operator T1,0 is invariant under twisting with ξ, while T0,1

changes its sign.
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6.2 The Commutation Relation

Let (π, V ) be a smooth representation of GSp(4, F ) such that the center of
GSp(4, F ) acts trivially, and let n ≥ 2 be a positive integer. In this section we
shall compute the commutator T0,1T1,0−T1,0T0,1, considered as an endomor-
phism of the space V (n) of K(pn)-invariant vectors. Briefly put, T0,1 and T1,0

commute up to level lowering operators. In particular, they act as commuting
endomorphisms at the minimal level; see Corollary 6.2.2 at the end of this
section. This result will have important consequences in the next chapter.

In general, if T is the characteristic function of K(pn)hK(pn) =
⊔
i hiK(pn),

and if T ′ is the characteristic function of K(pn)h′K(pn) =
⊔
j h

′
jK(pn), then

T · T ′ acts on a vector v ∈ V (n) by

(T · T ′)v =
∑
i,j

π(hih′j)v.

For convenience, if h ∈ GSp(4, F ) and v ∈ V , then we will write hv instead
of π(h)v. Let v ∈ V . According to Lemma 6.1.2, we have T0,1v = Av +Bv +
Cv +Dv with

Av =
∑

x,y,z∈o/p


1 y z$−n

1 x y
1

1



$
$

1
1

 v,

Bv =
∑

x,z∈o/p


1 x z$−n

1
1 −x

1



$

1
$

1

 v,

Cv =
∑

x,y∈o/p

tn


1 y

1 x y
1

1



$
$

1
1

 v,

Dv =
∑
x∈o/p

tn


1 x

1
1 −x

1



$

1
$

1

 v,
and T1,0v = A′v +B′v with

A′v =
∑

x,y∈o/p

∑
z∈o/p2


1 x

1
1 −x

1




1 y z$−n

1 y
1

1



$2

$
$

1

 v,

B′v =
∑

x,y,z∈o/p

tn


1 x

1
1 −x

1




1 y z$−n+1

1 y
1

1



$2

$
$

1

 v.
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It will be convenient to write these formulas as integrals:

Av = q3
∫

x,y,z∈o


1 y z$−n

1 x y
1

1



$
$

1
1

 v,

Bv = q2
∫

x,z∈o


1 x z$−n

1
1 −x

1



$

1
$

1

 v,

Cv = q2
∫

x,y∈o

tn


1 y

1 x y
1

1



$
$

1
1

 v,

Dv = q

∫
x∈o

tn


1 x

1
1 −x

1



$

1
$

1

 v,

A′v = q4
∫

x,y,z∈o


1 x

1
1 −x

1




1 y z$−n

1 y
1

1



$2

$
$

1

 v,

B′v = q3
∫

x,y,z∈o

tn


1 x

1
1 −x

1




1 y z$−n+1

1 y
1

1



$2

$
$

1

 v.
Here, we use the Haar measure on F that gives o measure 1. This change
of notation is advantageous because in the formulas for Av,Bv,Cv,Dv,A′v
and B′v, if v is replaced by any vector in V , then the formulas are still
meaningful; that is, the formulas may be regarded as defining endomorphisms
of V . Consequently, the product (T0,1T1,0)v consists of eight terms

AA′v, BA′v, CA′v, DA′v, AB′v, BB′v, CB′v, DB′v,

and similarly for (T1,0T0,1)v. We shall compute all these terms.

Proposition 6.2.1. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. For any n ≥ 2 we have

T0,1T1,0 − T1,0T0,1 = q2(θδ1 − θ′δ2),

where both sides are endomorphisms of V (n). Here δ1 and δ2 are the level
lowering operators defined in Sect. 3.3.
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Proof. Let v ∈ V (n). We start by computing CA′v. Using the above expres-
sions we have

CA′v = q6
∫

x,y,x′,y′,z′∈o

tn


1 y

1 x y
1

1



$
$

1
1




1 x′

1
1 −x′

1




1 y′ z′$−n

1 y′

1
1



$2

$
$

1

 v

= q6
∫

x,y,x′,y′,z′∈o

tn


1 x′

1
1 −x′

1




1 y − xx′ xx′2 − 2yx′

1 x y − xx′
1

1



$
$

1
1




1 y′ z′$−n

1 y′

1
1



$2

$
$

1

 v

= q6
∫

x,y,x′,y′,z′∈o

tn


1 x′

1
1 −x′

1




1 y
1 y

1
1



$2

$
$

1




1 y′ z′$−n−1

1 x y′

1
1



$
$

1
1

 v

= q6
∫

x,y,x′,y′,z,z′∈o

tn


1 x′

1
1 −x′

1




1 y
1 y

1
1



$2

$
$

1




1 y′ (z + z′$)$−n−1

1 x y′

1
1



$
$

1
1

 v

= q6
∫

x,y,x′,y′,z,z′∈o

tn


1 x′

1
1 −x′

1




1 y z$−n+1

1 y
1

1



$2

$
$

1


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1 y′ z′$−n

1 x y′

1
1



$
$

1
1

 v
= B′Av.

With similar calculations one computes

DA′v = B′Bv, AA′v = A′Av, BA′v = A′Bv.

So far this proves

(T0,1T1,0 − T1,0T0,1)v = AB′v +BB′v + CB′v +DD′v

− (A′Cv +A′Dv +B′Cv +B′Dv). (6.7)

We shall next compute that the terms in parentheses sum up to q2θ′δ2v. To
begin,

A′Cv = q6
∫

x,y,x′,y′,z∈o


1 x

1
1 −x

1




1 y z$−n

1 y
1

1



$2

$
$

1



tn


1 y′

1 x′ y′

1
1



$
$

1
1

 v

= q6
∫

x,y,x′,y′,z∈o


1 y z$−n

1 x′ y
1

1



$2

$
$

1



tn


1

1
x$n−1 1

x$n−1 1




1 y′

1 y′

1
1



$
$

1
1

 v

= q6
∫

x,y,x′,y′,z∈o


1 y z$−n

1 x′ y
1

1



$2

$
$

1



tn


1 y′

1 y′

1
1



$
$

1
1

 v

= q6
∫

y,x′,y′,z,z′∈o


1 y (z + z′$)$−n

1 x′ y
1

1



$2

$
$

1





6.2 The Commutation Relation 199

tn


1 y′

1 y′

1
1



$
$

1
1

 v

= q6
∫

y,x′,y′,z,z′∈o


1 y z$−n

1 x′ y
1

1



$2

$
$

1



tn


1

1
1

z′$n−1 1




1 y′

1 y′

1
1



$
$

1
1

 v.
At this point we use the matrix identity

1
1

1
z′$n−1 1




1 y′

1 y′

1
1



=


1

−y′z′$n−1 1
1

y′z′$n−1 1




1 y′

1 y′

1
1




1
1 y′2z′$n−1

1
z′$n−1 1

 .
It shows that

A′Cv = q6
∫

y,x′,y′,z,z′∈o


1 y z$−n

1 x′ y
1

1



$2

$
$

1




1 y′z′$−1

1 y′z′$−1

1
1

 tn


1 y′

1 y′

1
1



$
$

1
1

 v

= q6
∫

y,x′,y′,z,z′∈o


1 y z$−n

1 x′ y
1

1



$2

$
$

1



tn


1 y′

1 y′

1
1



$
$

1
1

 v
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= q6
∫

y,x′,y′,z∈o/p


1 y z$−n

1 x′ y
1

1

 tn


1 y′$−1

1 y′$−1

1
1




1
$

1
$

 v

= q6
∫

z,y,x′,y′∈o


1 z$−n

1
1

1




1
y′$n−1 1

1
−y′$n−1 1




1 y
1 x′ y

1
1



$
$

1
1

 v.
Similar calculations prove the following identities:

A′Dv = q5
∫

x,x′,z∈o


1 z$−n

1
1

1




1
1

x′$n−1 1
x′$n−1 1




1 x
1

1 −x
1



$

1
$

1

 v,

B′Cv = q5η

∫
y,x′,y′∈o


1

y$n−1 1
1

−y$n−1 1




1 y′

1 x′ y′

1
1



$
$

1
1

 v,

B′Dv = q4η

∫
x,x′∈o


1

1
x$n−1 1

x$n−1 1




1 x′

1
1 −x′

1



$

1
$

1

 v.
Using formula (3.24), it follows that

A′Cv +A′Dv = q2
∑
z∈o/p


1 z$−n

1
1

1

 δ2v
and

B′Cv +B′Dv = q2 η δ2v.

By (3.7) we obtain

A′Cv +A′Dv +B′Cv +B′Dv = q2 θ′ δ2v. (6.8)
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We are now going to compute the four remaining terms in (6.7), starting with

AB′v = q6
∫

x,y,z,x′,y′,z′∈o


1 y z$−n

1 x y
1

1



$
$

1
1



tn


1 y′

1 y′

1
1




1 x′ z′$−n+1

1
1 −x′

1



$2

$
$

1

 v.
Let (AB′)1 be the part of this integral where z′ ∈ o×, and let (AB′)2 be the
part of this integral where z′ ∈ p. To compute (AB′)1, we use the matrix
identity

tn


1 z′$−n+1

1
1

1



=


1 −z′−1$−n−1

1
1

1




1
1

1
z′$n+1 1



$−1z′−1

1
1
$z′


and get

(AB′)1 = q6
∫

x,y,z,x′,y′∈o
z′∈o×


1 y z$−n

1 x y
1

1



$
$

1
1




1
1

1
z′$n+1 1




1 y′$−1

1 y′$−1

1
1




1 x′$−1

1
1 −x′$−1

1

 v.
A computation shows that conjugating the third matrix by the product of the
last two matrices gives an element in K(pn). Consequently the third matrix
can be omitted, and we get

(AB′)1 = q6(1− q−1)
∫

x,y,z,x′,y′∈o


1 y z$−n

1 x y
1

1



$
$

1
1




1 y′$−1

1 y′$−1

1
1




1 x′$−1

1
1 −x′$−1

1

 v
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= q5(q − 1)
∫

x,y,z,x′∈o


1 y z$−n

1 x y
1

1



$
$

1
1




1 x′$−1

1
1 −x′$−1

1

 v. (6.9)

Next we compute

(AB′)2 = q5
∫

x,y,z,x′,y′∈o


1 y z$−n

1 x y
1

1



$
$

1
1



tn


1 y′

1 y′

1
1




1 x′

1
1 −x′

1



$2

$
$

1

 v

= q5
∫

x,y,z,x′,y′∈o


1 y

1 x y
1

1

 tn


1
1

1
z$n 1




1 y′

1 y′

1
1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v.
A computation shows that conjugating the first matrix on the second line by
the product of the last three matrices gives an element in K(pn). Consequently

(AB′)2 = q5
∫

x,y,x′,y′∈o


1 y

1 x y
1

1

 tn


1 y′

1 y′

1
1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v.
A further computation shows that the y variable can be brought all the way
to the right and will then disappear. Hence

(AB′)2 = q5
∫

x,x′,y′∈o


1

1 x
1

1

 tn
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1 y′

1 y′

1
1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v. (6.10)

This concludes the preliminary computation of AB′. With similar arguments
one obtains BB′v = (BB′)1 + (BB′)2, where

(BB′)1 = q4(q − 1)
∫

x,z,y′∈o


1 x y′$−1 z$−n

1 y′$−1

1 −x
1



$

1
$

1

 v (6.11)

and

(BB′)2 = q4
∫

x′,y′∈o

tn


1 y′$−1

1 y′$−1

1
1




1 x′

1
1 −x′

1



$

1
$

1

 v.
(6.12)

Furthermore, CB′v = (CB′)1 + (CB′)2, where

(CB′)1 = q5
∫

x,y,x′∈o

∫
z′∈o×

tn


1 y z′$−n

1 x y
1

1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v (6.13)

and

(CB′)2 = q4
∫

x,x′,y′∈o


1 y′

1 x y′

1
1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v. (6.14)

Finally, DB′v = (DB′)1 + (DB′)2, where

(DB′)1 = q4
∫

x,y′∈o

∫
z′∈o×

tn


1 x y′$−1 z′$−n

1 y′$−1

1 −x
1



$

1
$

1

 v (6.15)

and
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(DB′)2 = q3
∫

x′,y′∈o


1 y′$−1

1 y′$−1

1
1




1 x′

1
1 −x′

1



$

1
$

1

 v. (6.16)

Thus we obtain the eight terms (6.9) to (6.16). We rearrange and write
(BB′)2 + (DB′)1 = E1 + E2 with

E1 = q4
∫

x,y′,z′∈o

tn


1 x y′$−1 z′$−n

1 y′$−1

1 −x
1



$

1
$

1

 v
and

E2 = q3(q − 1)
∫

x′,y′∈o

tn


1 y′$−1

1 y′$−1

1
1




1 x′

1
1 −x′

1



$

1
$

1

 v.
Also write (AB′)2 + (CB′)1 = F1 + F2 with

F1 = q5
∫

x,y,x′,z′∈o

tn


1 y z′$−n

1 x y
1

1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v
and

F2 = q4(q − 1)
∫

x,x′,y′∈o


1

1 x
1

1

 tn


1 y′

1 y′

1
1




1 x′$−1

1
1 −x′$−1

1



$
$

1
1

 v.
By Lemma 3.3.7 we see that

(AB′)1 + F2 = q(q − 1)
∑
x∈o/p


1
$

1
$




1
1 x$−1

1
1

 δ1v,
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(BB′)1 + E2 = q(q − 1)


1

1
$
$

 δ1v,

(CB′)2 + F1 = q
∑
x∈o/p


1
$

1
$




1
1 x$−1

1
1

 δ1v,

(DB′)2 + E1 = q


1

1
$
$

 δ1v.
By Lemma 3.2.2 it follows that

(AB′)1 + F2 + (BB′)1 + E2 = q(q − 1)θδ1v

and
(CB′)2 + F1 + (DB′)2 + E1 = qθδ1v.

Hence the eight terms (6.9) to (6.16) add up to q2θδ1v. Together with (6.7)
and (6.8) this proves the asserted formula. ut

Corollary 6.2.2. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. Assume that V (n) 6= 0 for some
non-negative integer n, and let Nπ be the minimal paramodular level of π. If
Nπ ≥ 2, then the Hecke operators T0,1 and T1,0 act on V (Nπ) as a pair of
commuting endomorphisms.

Corollary 6.2.3. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. At any level n ≥ 2, the two Hecke
operators T0,1 and T1,0 + T ∗1,0 commute as endomorphisms of V (n) (and they
commute with Atkin–Lehner involutions).

Proof. This follows by adding the formula in Proposition 6.2.1 to its dual
(Atkin–Lehner conjugate). ut

6.3 Hecke Operators and Level Raising

In this section we prove formulas about commuting the Hecke operators T0,1

and T1,0 and the level raising operators θ and θ′. These formulas will be used
to compute Hecke eigenvalues at the minimal level in Sect. 6.4. The following
result uses the level lowering operators defined in Sect. 3.3.
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Proposition 6.3.1. Let (π, V ) be a smooth representation of GSp(4, F ) for
which the center acts trivially. For any n ≥ 2 we have the formulas

T0,1 ◦ θ′ = θ′ ◦ T0,1 + q2θ − η ◦ δ2, (6.17)

T0,1 ◦ θ = θ ◦ T0,1 + q2θ′ − η ◦ δ1, (6.18)

T1,0 ◦ θ′ = θ′ ◦ T1,0 + q3θ′ − q η ◦ δ3. (6.19)

For n = 1 we have

T0,1 ◦ θ′ = θ′ ◦ T0,1 + q2θ − η ◦ δ2 + θ′ ◦ u1, (6.20)

T0,1 ◦ θ = θ ◦ T0,1 + q2θ′ − η ◦ δ1 + θ ◦ u1, (6.21)

T1,0 ◦ θ′ = θ′ ◦ T1,0 + q3θ′ − q η ◦ δ3 + q θ ◦ u1. (6.22)

For any n ≥ 1,

T1,0 ◦ θ = q T0,1 ◦ θ′ − q2(q + 1) θ. (6.23)

In these formulas, each term is a linear map from V (n) to V (n+ 1).

Proof. Formula (6.18) follows from (6.17) by dualizing, observing that T0,1

is self-dual. Similarly, (6.21) follows from (6.20). We shall prove (6.17) and
(6.20) simultaneously. Let v ∈ V (n). In contrast to the convention of the
proof of Proposition 6.2.1, we will revert to writing π(g)v instead of gv for
g ∈ GSp(4, F ); this will avoid confusion at one point in the proof. Using
Lemmas 3.2.2 and 6.1.2, we have

T0,1θ
′v = A1 +A2 +B1 +B2 + C1 + C2 +D1 +D2

with

A1 = q3
∫

x,y,z∈o

π(


1 y z$−(n+1)

1 x y
1

1



$
$

1
1

 η)v,

A2 = q4
∫

x,y,z,c∈o

π(


1 y z$−(n+1)

1 x y
1

1



$
$

1
1




1 c$−n−1

1
1

1

)v,

B1 = q2
∫

x,z∈o

π(


1 x z$−(n+1)

1
1 −x

1



$

1
$

1

 η)v,

B2 = q3
∫

x,z,c∈o

π(


1 x z$−(n+1)

1
1 −x

1



$

1
$

1




1 c$−n−1

1
1

1

)v,
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C1 = q2
∫

x,y∈o

π(tn+1


1 y

1 x y
1

1



$
$

1
1

 η)v,

C2 = q3
∫

x,y,c∈o

π(tn+1


1 y

1 x y
1

1



$
$

1
1




1 c$−n−1

1
1

1

)v,

D1 = q

∫
x∈o

π(tn+1


1 x

1
1 −x

1



$

1
$

1

 η)v,

D2 = q2
∫

x,c∈o

π(tn+1


1 x

1
1 −x

1



$

1
$

1




1 c$−n−1

1
1

1

)v.

Making use of the formula in Lemma 3.2.2 i), a straightforward computation
shows that

A1 +B1 + C1 +D1 = q(q + 1)θv.

Next, let

R1 = q3
∫

x,y,z∈o

π(


1 z$−n−1

1
1

1

 tn


1 y
1 x y

1
1



$
$

1
1

)v,

R2 = q2η

∫
x,y∈o

π(


1 y

1 x y
1

1



$
$

1
1

)v,

R3 = q2
∫

x,z∈o

π(


1 z$−n−1

1
1

1

 tn


1 x
1

1 −x
1



$

1
$

1

)v,

R4 = qη

∫
x∈o

π(


1 x

1
1 −x

1



$

1
$

1

)v.

With this notation we have

θ′(T0,1v) = ηT0,1v + q

∫
z∈o

π(


1 z$−(n+1)

1
1

1

)T0,1v
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= ηπ(tn)T0,1v +A2 +B2 +R1 +R3

= C2 +D2 +R2 +R4 +A2 +B2 +R1 +R3.

Consequently,

A2 +B2 + C2 +D2 = θ′(T0,1v)− (R1 +R2 +R3 +R4).

Let R11 be the part of R1 where z ∈ o×, and let R12 be the part of R1 where
z ∈ p. Similarly, let R31 be the part of R3 where z ∈ o×, and let R32 be the
part of R3 where z ∈ p. It follows from the matrix identity

tn+1


1 z$−n−1

1
1

1

 tn =


1 −z−1$−n−1

1
1

1

 tn

z −$1−n

1
1

z−1


that R11 and R31 are invariant under tn+1. We compute

R11 = q3
∫

x,y∈o

∫
z∈o×

π(tn


1

1
1

z$n−1 1




1 y
1 x y

1
1



$
$

1
1

)v

= q3
∫

x,y∈o

∫
z∈o×

π(tn


1

1 x
1

1




1
−yz$n−1 1

1
yz$n−1 1




1 y
1 y2z$n−1 y

1
1




1
1

1
z$n−1 1



$
$

1
1

)v.

Since π(tn+1)R11 = R11, we get

R11 = q3η

∫
x,y∈o

∫
z∈o×

π(


1

−yz$n−1 1
1

yz$n−1 1




1 y
1 x y

1
1



$
$

1
1

)v

= q3η

∫
x∈o

∫
y,z∈o×

π(


1

−z$n−1 1
1

z$n−1 1


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1 y

1 x y
1

1



$
$

1
1

)v

+ (q − 1)q
∫
x∈o

π(


1

1 x
1

1




1
$

1
$

)v. (6.24)

A similar computation shows that

R31 = q2η

∫
x,z∈o×

π(


1 x

1
z$n−1 1 −x

z$n−1 1



$

1
$

1

)v

+ (q − 1)π(


1

1
$
$

)v. (6.25)

The two “small” terms in (6.24) and (6.25) add up to (q − 1)θv. Adding up
the other terms one easily obtains

R1 +R2 +R3 +R4 = q2η

∫
x,z∈o


1 x

1
z$n−1 1 −x

z$n−1 1



$

1
$

1

 v

+ q3η

∫
x,y,z∈o


1

z$n−1 1
1

−z$n−1 1




1 y
1 x y

1
1



$
$

1
1

 v + qθv.

The formula (6.17) now follows from (3.24), and (6.20) follows from Lemma
3.3.8.

The computations for (6.19) and (6.22) are similar but slightly easier. By
Lemma 3.2.2 and Lemma 6.1.2, we have T1,0(θ′v) = A1 +A2 +B1 +B2 with

A1 = q4
∫

x,y,z∈o

π(


1 x y z$−n−1

1 y
1 −x

1



$2

$
$

1

)ηv,

A2 = q5
∫

x,y,z,c∈o

π(


1 x y z$−n−1

1 y
1 −x

1



$2

$
$

1




1 c$−n−1

1
1

1

)v,
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B1 = q3
∫

x,y,z∈o

π(tn+1


1 x y z$−n

1 y
1 −x

1



$2

$
$

1

)ηv,

B2 = q4
∫

x,y,z,c∈o

π(tn+1


1 x y z$−n

1 y
1 −x

1



$2

$
$

1




1 c$−n−1

1
1

1

)v.

Obvious simplifications show that

A1 +B1 = q3θ′v.

We can rewrite

A2 +B2 =
(
q

∫
c∈o

π(


1 c$−n−1

1
1

1

) + ηπ(tn)
)

q4
∫

x,y,z∈o

π(


1 x y z$−n

1 y
1 −x

1



$2

$
$

1

)v

=
(
q

∫
c∈o

π(


1 c$−n−1

1
1

1

) + ηπ(tn)
)

(
T1,0v − q3

∫
x,y,z∈o

π(tn


1 x y z$−n+1

1 y
1 −x

1



$2

$
$

1

)v
)

= θ′(T1,0v)−R,

where

R = q4
∫

c,x,y,z∈o

π(tn


1

1
1

c$n−1 1




1 x y z$−n+1

1 y
1 −x

1

)η−1v

+ q3
∫

x,y,z∈o

π(η tn−1


1

1
1

z$n−1 1

 tn−1


1 x y

1 y
1 −x

1

)η−1v.

By (3.26) we have
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R = q

∫
c∈o

π(tn


1

1
1

c$n−1 1

)δ3(v) = qη δ3(v)

if n ≥ 2, and by (3.25) we have

R = q

∫
c∈o

π(t1


1

1
1

c 1

)(δ3(v)− η−1θu1v) = qη δ3(v)− qθu1v

if n = 1. This proves (6.19) and (6.22).
Next we prove (6.23). By Lemmas 3.2.2 and 6.1.2 we get T1,0(θv) = A +

B + C +D with

A = q4
∫

x,z∈o

π(


1 x

1
1 −x

1




1 z$−n−1

1
1

1



$

1
$

1

)v,

B = q5
∫

y,c,z∈o

π(


1 y z$−n−1

1 c y
1

1



$
$

1
1

)v,

C = q3
∫

x,z∈o

π(tn+1


1 x

1
1 −x

1




1 z$−n

1
1

1



$

1
$

1

)v,

D = q4
∫

y,c,z∈o

π(tn+1


1 y z$−n

1 c y
1

1



$
$

1
1

)v.

Using Lemma 3.2.2 ii) we rewrite

A = q4
∫

x,z,z′∈o

π(


1 x

1
1 −x

1




1 z$−n−1

1
1

1



$

1
$

1




1 z′$−n−1

1
1

1

)v,

= q3
∫

x,z∈o

π(


1 x

1
1 −x

1




1 z$−n−1

1
1

1



$

1
$

1

)θ′v
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− q3
∫

x,z∈o

π(


1 x

1
1 −x

1




1 z$−n−1

1
1

1



$

1
$

1

)ηv

= q3
∫

x,z∈o

π(


1 x

1
1 −x

1




1 z$−n−1

1
1

1



$

1
$

1

)θ′v

− q3π(


1

1
$
$

)v.

Similar manipulations lead to

B = q4
∫

y,z,c∈o

π(


1 y z$−n−1

1 c y
1

1



$
$

1
1

)θ′v

− q4
∫
c∈o

π(


1

1 c
1

1




1
$

1
$

)v,

C = q2
∫
x∈o

π(tn+1


1 x

1
1 −x

1



$

1
$

1

)θ′v

− q2π(


1

1
$
$

)v,

D = q3
∫

y,c∈o

π(tn+1


1 y

1 c y
1

1



$
$

1
1

)θ′v

− q3
∫
c∈o

π(


1

1 c
1

1




1
$

1
$

)v.

Adding up everything and observing Lemma 6.1.2 i) proves formula (6.23).
ut
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Corollary 6.3.2. Let (π, V ) be a smooth representation of GSp(4, F ) such
that the center of GSp(4, F ) acts trivially. Assume that V (n) 6= 0 for some
non-negative integer n, and let Nπ be the minimal paramodular level.

i) Assume that Nπ ≥ 2. Then, for any v ∈ V (Nπ),

T0,1(θ ± θ′)v = (θ ± θ′)(T0,1v ± q2v) (6.26)

and
T1,0(θ ± θ′)v = qθ′T0,1v ± θ′T1,0v − q2θv ± q3θ′v. (6.27)

In particular, if v ∈ V (Nπ) is an eigenvector for T0,1 with eigenvalue λ,
then (θ ± θ′)v is an eigenvector with eigenvalue λ± q2.

ii) Assume that Nπ = 1. Then, for v ∈ V (1),

T0,1(θ ± θ′)v = (θ ± θ′)(T0,1v ± q2v + u1v) (6.28)

and

T1,0(θ ± θ′)v = qθ′T0,1v ± θ′T1,0v − q2θv ± q3θ′v ± q(θ ± θ′)u1v. (6.29)

In particular, if u1v = εv with ε ∈ {±1}, and if v ∈ V (1) is an eigenvector
for T0,1 with eigenvalue λ, then (θ±θ′)v is an eigenvector with eigenvalue
λ± q2 + ε.

Proof. The first formula follows by adding and subtracting the first two for-
mulas from Proposition 6.3.1, observing that the δ1 and δ2 terms are zero at
the minimal level. Similarly, (6.28) follows by adding and subtracting (6.20)
and (6.21). Equations (6.27) and (6.29) follow also by combining several of
the formulas from Proposition 6.3.1. ut

6.4 Computation of Hecke Eigenvalues

We already proved uniqueness at the minimal level for non-supercuspidal, irre-
ducible, admissible representations of GSp(4, F ) with trivial central character
(Theorem 5.6.1): If such a representation (π, V ) is paramodular, and if Nπ
is the minimal paramodular level, then dimV (Nπ) = 1. Hence, acting with
the two Hecke operators T0,1 and T1,0 on V (Nπ), we obtain two eigenvalues
λ and µ, respectively. The results of the present section will allow us to com-
pute these eigenvalues for all non-supercuspidal representations, except those
of type VII, VIII and IX; for these representations see Corollary 7.4.6. The
actual application of these results will happen in Theorem 7.5.2. We start by
recalling analogous results for GL(2).
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Preliminaries on GL(2)

Let (π, V ) be an irreducible, admissible representation of GL(2, F ) with trivial
central character. We define the usual Hecke subgroups

Γ0(pn) = {
[
a b
c d

]
∈ GL(2, o) : c ∈ pn},

and the Atkin–Lehner element [
0 1
−$n 0

]
,

which normalizes Γ0(pn). If π is infinite-dimensional, there exists a non-
negative integer n such that V0(n) := {v ∈ V : π(g)v = v for all g ∈ Γ0(n)} 6=
0. If n is minimal with this property, then V0(n) is one-dimensional. The Hecke
operators

T1 := characteristic function of Γ0(pn)
[
$

1

]
Γ0(pn)

and

T ∗1 := characteristic function of Γ0(pn)
[

1
$

]
Γ0(pn)

act on V0(n). At the minimal level they act by scalars λ and λ∗ on the one-
dimensional space V0(n). Since T ∗1 is Atkin–Lehner conjugate to T1, we ac-
tually have λ = λ∗. We call this number simply the Hecke eigenvalue of the
representation π. To compute the Hecke eigenvalues we need the following
lemma.

Lemma 6.4.1. For K = GL(2, o) we have disjoint decompositions

K

[
$

1

]
K =

[
1
$

]
K t

⊔
x∈o/p

[
1 x

1

][
$

1

]
K

=
[
$

1

]
K t

⊔
x∈o/p

[
1
x 1

][
1
$

]
K.

For any n ≥ 1 we have disjoint decompositions

Γ0(pn)
[
$

1

]
Γ0(pn) =

⊔
x∈o/p

[
1 x

1

][
$

1

]
Γ0(pn)

and

Γ0(pn)
[

1
$

]
Γ0(pn) =

⊔
x∈o/p

[
1

x$n 1

][
1
$

]
Γ0(pn).
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Proof. These are well-known statements. The second decomposition can be
quickly proved using the Iwahori factorization

Γ0(pn) =
[

1 o
1

][
o×

o×

][
1
pn 1

]
.

The last decomposition follows from the previous one by conjugating with the
Atkin–Lehner element. ut

Table 6.1 lists the Hecke eigenvalues of all the irreducible, admissible, infinite-
dimensional representations of GL(2, F ) with trivial central character. Using
the formulas from Lemma 6.4.1, these eigenvalues can be quickly computed
provided the local newform in the Kirillov model is known. The explicit form
of the newform, as well as the minimal level, is given, for example, in [Sch1].

Table 6.1. Hecke eigenvalues for PGL(2).

representation parameter level Hecke eigenvalue

χ× χ−1 χ unramified 0 q1/2(χ($) + χ−1($))

(irreducible) χ ramified 2a(χ) 0

χ unramified 1 χ($)
χStGL(2)

χ ramified 2a(χ) 0

χ unramified 0 (q + 1)χ($)
χ1GL(2)

χ ramified — —

π supercuspidal ≥ 2 0

Eigenvalues for Siegel Induced Representations

Consider an induced representation π o σ, where (π, V ) is an irreducible, ad-
missible, infinite-dimensional representation of GL(2, F ) and σ is a character
of F× with ωπσ2 = 1. We know by Theorem 5.2.2 that the minimal paramod-
ular level of πoσ is n = a(σπ)+2a(σ), and that the space of K(pn)-invariant
vectors is one-dimensional. The following proposition gives the resulting Hecke
eigenvalues.

Proposition 6.4.2. Consider an induced representation π o σ as above with
ωπσ

2 = 1. Let n = a(σπ) + 2a(σ) be the minimal paramodular level. Assume
that n ≥ 1. Let λ1 be the Hecke eigenvalue of σπ as listed in Table 6.1. Let f
be a non-zero K(pn)-invariant vector in π o σ.
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i) We have T0,1f = λf with

λ =


q3/2(σ($) + σ($)−1) + (q + 1)λ1 if σ unramified, a(σπ) = 1,
q3/2(σ($) + σ($)−1) if σ unramified, a(σπ) ≥ 2,
qλ1 if σ ramified, a(σπ) ∈ {0, 1},
0 if σ ramified, a(σπ) ≥ 2.

ii) We have T1,0f = µf with

µ =


q3/2(σ($) + σ($)−1)λ1 if σ unramified, a(σπ) = 1
0 if σ unramified, a(σπ) ≥ 2,
0 if σ ramified, a(σπ) = 0,
−q2 if σ ramified, a(σπ) ≥ 1.

The same formulas hold if π = χ1GL(2) and σχ is unramified (if σχ is ramified,
then χ1GL(2)oσ has no paramodular vectors); in this case λ1 = (q+1)(σχ)($).

Proof. In the proof of Theorem 5.2.2 we found that if a(σ) = 0, i.e., if σ is
unramified, then a K(pn)-invariant function f in the standard model of πoσ
is supported on P (F )K(pn) and has the property f(1) = v, where v ∈ V
is invariant under Γ0(pn). If a(σ) > 0, then a K(pn)-invariant function f is
supported on P (F )Ma(σ), where

Mi =


1

1
$i 1

$i 1

 ,
and we have f(Ma(σ)) = v, where v ∈ V is invariant under

(σπ)(
[

o p−a(σ)

pa(σπ)+a(σ) o

]
);

note that σπ has trivial central character.
i) We shall now compute T0,1f , starting with the case that σ is unramified.

By Lemma 6.1.2, (T0,1f)(1) = A+B + C +D with

A =
∑

x,y,z∈o/p

f(


1 y z$−n

1 x y
1

1



$
$

1
1

), (6.30)

B =
∑

x,z∈o/p

f(


1 x z$−n

1
1 −x

1



$

1
$

1

), (6.31)
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C =
∑

x,y∈o/p

f(tn


1 y

1 x y
1

1



$
$

1
1

), (6.32)

D =
∑
x∈o/p

f(tn


1 x

1
1 −x

1



$

1
$

1

). (6.33)

It is immediate that A = q3/2σ($)−1v. For B we get

B = q
∑
x∈o/p

(σπ)(
[

1 x
1

][
$

1

]
)v.

By Lemma 6.4.1, this equals qT1v. Hence, by the values in Table 6.1,

B =
{
qλ1v if a(σπ) = 1,
0 if a(σπ) ≥ 2;

note that we are assuming n ≥ 1 and a(σ) = 0, so that a(σπ) ≥ 1. For C a
straightforward computation shows that

C = q
∑
y∈o/p

(σπ)(
[

1
y$n 1

][
1
$

]
)v.

Again by Lemma 6.4.1, this equals qT1v. As above we conclude that

C =
{
qλ1v if a(σπ) = 1,
0 if a(σπ) ≥ 2.

Finally a computation shows that

D = q3/2σ($)
∑
x∈o/p

f(


1

1
x$n−1 1

x$n−1 1

).

First consider the case a(σπ) ≥ 2. By (5.10), the argument of f is equivalent
to M1 if x is a unit. Hence only the term x = 0 survives, and we get D =
q3/2σ($)v. Now assume a(σπ) = 1. Then n = 2a(σ) + a(σπ) = 1. Using the
identity 

1
1

x 1
x 1

 =


1 $−1

$ 1
x$−1

x




−x−1$−1

−x−1

1 x−1

$ x−1$

 ,
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one computes

D = q3/2σ($)v + (q − 1)(σπ)(
[

1
$

]
)v.

The representation σπ is an unramified twist of StGL(2), and the matrix
[

1
$

]
is the Atkin–Lehner element of level p. Its eigenvalue on the newform v is
ε(1/2, σπ), which is also equal to −λ1. Hence

D = q3/2σ($)v − (q − 1)λ1v.

Adding up A+B + C +D proves our assertion about λ for unramified σ.
Next consider the case that σ is ramified. Similarly as above we have

(T0,1f)(Ma(σ)) = A+B + C +D with

A =
∑

x,y,z∈o/p

f(Ma(σ)


1 y z$−n

1 x y
1

1



$
$

1
1

)

= q−3/2σ($)−1
∑

x,y,z∈o/p

f(Ma(σ)+1


1 y$−1 z$−n−1

1 x$−1 y$−1

1
1

),

and so on. Writing

Mi =


−$−i −1

−$−i −1
−$i

−$i

 s2s1s2


1 $−i

1 $−i

1
1

 ,
we compute

A = q3a(σ)+3/2σ(−$)−1ωπ(−$−a(σ)−1)
∑

x,y,z∈o/p

f(


1

1
(y$a(σ) + 1)$−a(σ)−1 z$−n−1 1

x$−1 (y$a(σ) + 1)$−a(σ)−1 1

 s2s1s2)
= q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))

∑
x,z∈o/p

f(


1

1
$−a(σ)−1 z$−n−1 1
x$−1 $−a(σ)−1 1

 s2s1s2).
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Let A1 be the part of this expression where z ∈ o×, and let A2 be the part
where z = 0. Using the identity

1
1

$−a(σ)−1 z$−n−1 1
x$−1 $−a(σ)−1 1

 =


1

−z−1$n−a(σ) $n+1 z−1

$−n−1

z−1$−a(σ)−1 1




1
1

$n−a(σ) 1
(x− z−1$n−2a(σ))$−1 $n−a(σ) 1

 s2


1
−z −$n+1

−z−1

1

 ,
we get

A1 = q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))
∑
x∈o/p

∑
z∈(o/p)×

q−3(n+1)/2

π(
[

1
−z−1$n−a(σ) $n+1

]
)f(


1

1
$n−a(σ) 1

(x− z−1$n−2a(σ))$−1 $n−a(σ) 1

 s1)
= q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))

∑
x∈o/p

∑
z∈(o/p)×

q−3(n+1)/2

π(
[

1
−z−1$n−a(σ) $n+1

]
)f(


1

1
$n−a(σ) 1
x$−1 $n−a(σ) 1

 s1).
If x is a unit, then the argument of f is equal to

s1


1

−x−1$n−a(σ)+1 $ x−1

$−1

x−1$n−a(σ) 1

Mn−a(σ)+1


1

−x−1

x $
−x−1$2n−2a(σ)+1 1

 ,
which is not equivalent to Ma(σ) in P (F )\GSp(4, F )/K(pn). Hence only the
term x = 0 survives, and we get

A1 = q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))
∑

z∈(o/p)×

q−3(n+1)/2
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π(
[

1
−z−1$n−a(σ) $n+1

]
)f(


1

1
$n−a(σ) 1

$n−a(σ) 1

 s1)
= q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))

∑
z∈(o/p)×

q−3(n+1)/2 σ(−1)

q−3a(σ)+3n/2ωπ(−$a(σ)−n)π(
[

1
−z−1$n−a(σ) $n+1

][
$n

1

]
)f(Ma(σ))

= q
∑

z∈(o/p)×

(σπ)(
[

1
z$n−a(σ) 1

][
1
$

]
)v.

Next we compute

A2 = q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))
∑
x∈o/p

f(


1

1
$−a(σ)−1 1
x$−1 $−a(σ)−1 1

 s2s1s2).
Let A21 be the part where x = 0, and let A22 be the part where x ∈ o×. To
compute A21, note that

M−a(σ)−1s2s1s2 =


1

$n

$−n

1

Mn−a(σ)−1tns2


−1

1
1
−1

 .
This identity shows that A21 = 0 unless n − a(σ) − 1 = a(σ). The latter
condition is fulfilled if and only if a(σπ) = 1. Assuming this is the case, we
have

A21 = qσ(−$)ωπ(−$−a(σ))π(
[

1
$n

]
)f(Ma(σ))

= q(σπ)(
[

$−a(σ)

$a(σ)+1

]
)v.

The matrix appearing here is a conjugate of the Atkin–Lehner involution for
the representation σπ, which is an unramified twist of StGL(2). The eigenvalue
of the Atkin–Lehner element on the newform is the sign of the ε factor, which
is equal to −λ1. Hence

A21 =
{

0 if a(σπ) 6= 1,
−qλ1v if a(σπ) = 1.
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Next we compute A22, first considering the case that a(σπ) 6= 0. The identity
1

1
$−a(σ)−1 1
x$−1 $−a(σ)−1 1

s2s1s2 =


−$a(σ)+1 1 $

−x$a(σ) x
$−a(σ) $−2a(σ)−1

x$−a(σ)−1



Ma(σ)


−1 −x−1$−2a(σ)−1

−x−1$ 1
x−1

x−1


shows that

A22 = q3a(σ)+5/2σ(−$)ωπ(−$−a(σ))
∑

x∈(o/p)×

q−3a(σ)−3/2σ(−x)

π(
[
−$a(σ)+1 1

−x$a(σ)

]
)f(Ma(σ))

= q
∑

x∈(o/p)×

(σπ)(
[

1 x$−a(σ)

1

][
$

1

]
)v.

Now consider the case a(σπ) = 0, or equivalently, n = 2a(σ). In this case
1

1
$−a(σ)−1 1
x$−1 $−a(σ)−1 1

 s2s1s2 =


$a(σ)+1 1
−x$2a(σ)+1 $a(σ)+1 1

$−a(σ)−1

x$−1 $−a(σ)−1




1
1

−$a(σ)+1 1
x$2a(σ)+1 −$a(σ)+1 1

 ,
and this is not equivalent to Ma(σ). Hence

A22 =


q

∑
x∈(o/p)×

(σπ)(
[

1 x$−a(σ)

1

][
$

1

]
)v if a(σπ) 6= 0,

0 if a(σπ) = 0.

Next we compute

B =
∑

x,z∈o/p

f(Ma(σ)


1 x z$−n

1
1 −x

1



$

1
$

1

)
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=
∑

x,z∈o/p

π(
[

1 x
1

]
)f(Ma(σ)


1 z$−n

1
1

1



$

1
$

1

).

If z is a unit, then the matrix identity

Ma(σ)


1 z$−n

1
1

1

 =


−$−a(σ) z$−n

z−1$n−a(σ) z−1$n−2a(σ) −1
z$a(σ)−n

−$a(σ) 1




1
1

z−1$n−a(σ) 1
z−1$n z−1$n−a(σ) 1

 s2


1
1 −z−1$n−2a(σ)

1
1


shows that the argument of f is equivalent to Mn−a(σ)+1 in the double coset
space P (F )\GSp(4, F )/K(pn), and we get zero. Hence only the term z = 0
survives, and we get

B =
∑
x∈o/p

(σπ)(
[

1 x
1

][
$

1

]
)v = q(σπ)(

[
$

1

]
)v.

Next we compute

C =
∑

x,y∈o/p

f(Ma(σ)tn


1 y

1 x y
1

1



$
$

1
1

)

=
∑

x,y∈o/p

π(
[

1
y$n 1

]
)f(Ma(σ)


1

1 x
1

1




1
$

1
$

).

The identity

Ma(σ)


1

1 x
1

1




1
$

1
$



=


1 $−a(σ) −$1−2a(σ)

−x
$ −$1−a(σ)

−x$

Ma(σ)−1


1 −x−1$1−2a(σ)

−x−1$ −1
−x−1

−x−1


shows that the argument of f is equivalent to Ma(σ)−1 if x is a unit. Hence
only the term x = 0 survives, and we get
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C =
∑
y∈o/p

(σπ)(
[

1
y$n 1

][
1
$

]
)v = q(σπ)(

[
1
$

]
)v.

Finally we compute

D =
∑
x∈o/p

f(Ma(σ)tn


1 x

1
1 −x

1



$

1
$

1

).

The argument of f is equal to
1

1
$a(σ)(1 + x$n−a(σ)) 1

$a(σ)(1 + x$n−a(σ)) 1




1
1
$
$

 tn,
and therefore equivalent to Ma(σ)−1. Hence D = 0.

Now we summarize everything, starting with the case a(σπ) = 0. The
non-zero terms are A1, B and C, and we get

(T0,1f)(Ma(σ)) = A1 + C +B

= q
∑
z∈o/p

(σπ)(
[

1
z$n−a(σ) 1

][
1
$

]
)v + q(σπ)(

[
$

1

]
)v.

By Lemma 6.4.1 this equals qλ1v, so we get λ = qλ1. If a(σπ) = 1, then all
of A1, A21, A22, B and C are non-zero, and we get

(T0,1f)(Ma(σ)) = A1 + C +A21 +A22 +B

= q
∑
z∈o/p

(σπ)(
[

1
z$n−a(σ) 1

][
1
$

]
)v − qλ1v

+ q
∑
x∈o/p

(σπ)(
[

1 x$−a(σ)

1

][
$

1

]
)v.

By Lemma 6.4.1 this equals qλ1v − qλ1v + qλ1v, hence λ = qλ1. Finally, if
a(σπ) ≥ 2, then the non-zero terms are A1, A22, B and C, and we get

(T0,1f)(Ma(σ)) = A1 + C +A22 +B

= q
∑
z∈o/p

(σπ)(
[

1
z$n−a(σ) 1

][
1
$

]
)v

+ q
∑
x∈o/p

(σπ)(
[

1 x$−a(σ)

1

][
$

1

]
)v.
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By Lemma 6.4.1 this equals 2qλ1 = 0 (see Table 6.1).
ii) Next we consider µ, first assuming that σ is unramified. By Lemma

6.1.2, (T1,0f)(1) = A+B with

A =
∑

x,y∈o/p

∑
z∈o/p2

f(


1 x

1
1 −x

1




1 y z$−n

1 y
1

1



$2

$
$

1

),

B =
∑

x,y,z∈o/p

f(tn


1 x

1
1 −x

1




1 y z$−n+1

1 y
1

1



$2

$
$

1

).

It is immediately computed that

A = q3/2σ($)−1
∑
x∈o/p

(σπ)(
[

1 x
1

][
$

1

]
)v = q3/2σ($)−1λ1v;

again, note that a(σπ) > 0 since a(σ) = 0 and n > 0 by assumption. B can
be rewritten as

B = q3/2
∑

x,y,z∈o/p

π(
[

1
y$n 1

][
$−1

1

]
)f(


1

1
x$n−1 1
z$n−1 x$n−1 1

)

= B1 +B2,

where B1 is the part of the sum where z is a unit, and B2 is the part where
z = 0. Using the matrix identity

1
1

x$n−1 1
z$n−1 x$n−1 1



=


−z−1$ −z−1x −$−n

1
1 −x$−1

−z$−1




$−n

1
−x2z−1$n−1 1 −z−1x

−$n −xz−1$n −z−1$

 ,
we get

B1 = q3/2
∑

x,y,z∈o/p
z 6=0

π(
[

1
y$n 1

][
$−1

1

]
)f(


−z−1$ −z−1x −$−n

1
1 −x$−1

−z$−1

)
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=
∑

x,y,z∈o/p
z 6=0

π(
[

1
y$n 1

][
$−1

1

][
−z−1$ −z−1x

1

]
)v

= (q − 1)
∑

x,y∈o/p

π(
[

1
y$n 1

][
$−1

1

][
$ x

1

]
)v

= (q − 1)
∑

x,y∈o/p

(σπ)(
[

1
y$n 1

][
$−1

1

][
1 x

1

][
$

1

]
)v.

By Lemma 6.4.1, the summation over x amounts to applying T1 to v. The
same is true for the summation over y. We conclude

B1 = λ2
1(q − 1)v.

Next we compute

B2 = q3/2
∑

x,y∈o/p

π(
[

1
y$n 1

][
$−1

1

]
)f(


1

1
x$n−1 1

x$n−1 1

).

Let B21 be the part where x ∈ o×, and let B22 be the part where x = 0. We
have B21 = 0 if n ≥ 2, since then the argument of f is not equivalent to 1 in
P (F )\GSp(4, F )/K(pn). If n = 1 we use the identity

1
1

x 1
x 1

 =


1 x−1$−1

$ x−1

$−1

1




−x−1$−1

−x−1

x 1
x$ $


and get

B21 = q3/2
∑
y∈o/p

∑
x∈(o/p)×

π(
[

1
y$ 1

][
$−1

1

]
)f(


1 x−1$−1

$ x−1

$−1

1

)

= (q − 1)
∑
y∈o/p

π(
[

1
y$ 1

][
$−1

1

][
1

$

]
)f(1)

= (q − 1)
∑
y∈o/p

(σπ)(
[

1
y$ 1

][
$−1

1

][
1

$

]
)v.

The matrix
[

1
$

]
is the Atkin–Lehner element acting on the newform v of

the representation σπ, which is an unramified twist of StGL(2). The resulting
eigenvalue is −λ1. Hence
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B21 = −λ1(q − 1)
∑
y∈o/p

(σπ)(
[

1
y$ 1

][
1
$

]
)v.

By Lemma 6.4.1, we obtain

B21 =
{

0 if n ≥ 2,
−λ2

1(q − 1)v if n = 1.

It remains to compute

B22 = q3/2
∑
y∈o/p

π(
[

1
y$n 1

][
$−1

1

]
)f(1)

= q3/2σ($)
∑
y∈o/p

(σπ)(
[

1
y$n 1

][
1
$

]
)v

= q3/2σ($)λ1v.

Summarizing everything, we get µ = q3/2(σ($)+σ($)−1)λ1, since λ1 = 0 for
n ≥ 2. This proves the assertion about µ in the unramified case.

Next we consider the case that σ is ramified. We have by Lemma 6.1.2,
(T1,0f)(Ma(σ)) = A+B with

A =
∑

x,y∈o/p

∑
z∈o/p2

f(Ma(σ)


1 x

1
1 −x

1




1 y z$−n

1 y
1

1



$2

$
$

1

),

B =
∑

x,y,z∈o/p

f(Ma(σ)tn


1 x

1
1 −x

1




1 y z$−n+1

1 y
1

1



$2

$
$

1

).

One computes

A = q3a(σ)+1ωπ(−$−a(σ))
∑
x∈o/p

∑
z∈o/p2

f(s2s1s2


1 x

1
1 −x

1




1 $−a(σ) z$−n

1 $−a(σ)

1
1



$2

$
$

1

)

= q3a(σ)+1ωπ(−$−a(σ))
∑
x∈o/p

∑
z∈o/p2

π(
[

1 x
1

]
)f(s2s1s2


1 $−a(σ) z$−n

1 $−a(σ)

1
1



$2

$
$

1

).
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We have the matrix identity

s2s1s2


1 $−a(σ) z$−n

1 $−a(σ)

1
1

 =


1

−z−1$n −z−1$n−a(σ) z−1

−$−n

z−1 −z−1$−a(σ)



Mn−a(σ)


1

1
−z $n−2a(σ)

$n z

 . (6.34)

It shows that if z is a unit, then the argument of f is equivalent to Mn−a(σ)+1

in P (F )\GSp(4, F )/K(pn). Hence

A = q3a(σ)+1ωπ(−$−a(σ))
∑
x∈o/p

∑
z∈o/p

π(
[

1 x
1

]
)f(s2s1s2


1 $−a(σ) z$−n+1

1 $−a(σ)

1
1



$2

$
$

1

).

Assume first that a(σπ) = 0, i.e., n = 2a(σ). The identity

s2s1s2


1 $−a(σ) z$−n+1

1 $−a(σ)

1
1



$2

$
$

1



=


−z$a(σ)+1 $ z$2

$n

−z$2−n+a(σ) −$2−n

−$

Ma(σ)−1


$−n

−z$ 1
1

$n


then shows that A = 0. Assume now that a(σπ) 6= 0. Let A1 be the part of
the above expression for A where z = 0, and let A2 be the part where z ∈ o×.
If z = 0, then the argument of f equals

s1


$n

1
1
$−n




1
$
−$
−$2

Mn−a(σ)−1


$−n

1
1

$n

 .
If a(σπ) ≥ 2, then this is equivalent to Ma(σ)+1, and we get A1 = 0. But if
a(σπ) = 1, we get

A1 = q3a(σ)+1ωπ(−$−a(σ))
∑
x∈o/p



228 6 Hecke Operators

π(
[

1 x
1

]
)f(s1


$n

1
1
$−n




1
$
−$
−$2

Ma(σ))

= q3a(σ)+1ωπ(−$−a(σ))σ(−1)
∑
x∈o/p

π(
[

1 x
1

][
1

1

]
)f(


$n

1
1
$−n




1
$
$
$2

Ma(σ))

= q
∑
x∈o/p

(σπ)(
[

1 x
1

][
$

1

][
$−a(σ)

$n−a(σ)

]
)v.

In the present case a(σπ) = 1 we have π = χStGL(2) with σχ an unramified

quadratic character. The matrix
[

$−a(σ)

$n−a(σ)

]
is (a conjugate of) the

Atkin–Lehner element, whose eigenvalue on the local newform is −(σχ)($) =
−λ1, the sign of the ε-factor (see Table 6.1). Hence

A1 =

0 if a(σπ) 6= 1,

−q2λ1(σπ)(
[
$

1

]
)v if a(σπ) = 1.

Next we compute A2. Since we are assuming a(σπ) 6= 0, we can use the
identity

s2s1s2


1 $−a(σ) z$−n+1

1 $−a(σ)

1
1

 =


1

$n−1 −z−1$n−1−a(σ) z−1

−$−n+1

−1 −z−1$−a(σ)



Mn−1−a(σ)


−z−1

1
1 −z−1$n−1−2a(σ)

$n−1 z


and get

A2 = q3a(σ)+1ωπ(−$−a(σ))
∑
x∈o/p

∑
z∈(o/p)×

q−3n/2+3/2σ(−1)

π(
[

1 x
1

][
1

$n−1 −z−1$n−1−a(σ)

]
)f(Mn−1−a(σ)


$2

$
$

1

)
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= q
∑
x∈o/p

∑
z∈(o/p)×

(σπ)(
[

1 x
1

][
$

z$n−a(σ) $

]
)v

= q
∑
x∈o/p

∑
z∈o/p

(σπ)(
[

1 x
1

][
$

z$n−a(σ) $

]
)v

− q
∑
x∈o/p

(σπ)(
[

1 x
1

][
$
$

]
)v

= q
∑
x∈o/p

∑
z∈o/p

(σπ)(
[

1 x
1

][
$

1

][
1

z$n−a(σ) 1

][
1
$

]
)v − q2v

= qλ1

∑
x∈o/p

(σπ)(
[

1 x
1

][
$

1

]
)v − q2v

= q2λ1(σπ)(
[
$

1

]
)v − q2v.

Since a(σπ) ≥ 2 if and only if λ1 = 0, we get

A = A1 +A2 = −q2v.

As for B, it is easily computed that

B = q
∑

y,z∈o/p

f(Ma(σ)tn


1 y z$−n+1

1 y
1

1



$2

$
$

1

)

= q
∑

y,z∈o/p

π(
[

1
y$n 1

]
)f(Ma(σ)tn


1 z$−n+1

1
1

1



$2

$
$

1

)

= q
∑

y,z∈o/p

π(
[

1
y$n 1

]
)f(Ma(σ)


1

1
1

z$n+1 1




1
$
$
$2

).

It follows from (5.8) that the argument of f is equivalent to Ma(σ)−1. Hence
B = 0. This proves the assertion about µ if σ is ramified. ut

Corollary 6.4.3. Let ξ be the non-trivial, unramified, quadratic character of
F×, and let σ be an unramified, quadratic character. Then the representation
δ([ξ, νξ], ν−1/2σ) of type Va has minimal paramodular level n = 2. The T0,1

eigenvalue on the essentially unique newform is λ = 0. The T1,0 eigenvalue is
µ = −q2 − q.

Proof. Since T0,1 changes its sign and T1,0 remains invariant when the rep-
resentation is twisted with ξ, we may assume that σ = 1. By (2.10), the
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representation L(ν1/2ξStGL(2), ν
−1/2) of type Vb is a subrepresentation of

ν−1/2ξStGL(2) oν1/2. Let f be the newform of level p in ν−1/2ξStGL(2) oν1/2;
it lies in the subspace realizing Vb. By Table A.13, u1f = f . Let f0 be
the newform of level p in ν1/2ξStGL(2) o ν−1/2. Evidently, u1f0 = f0. By
the remarks following Proposition 5.5.5, the newform in δ([ξ, νξ], ν−1/2σ) is
given by θf0 − θ′f0. By Proposition 6.4.2 we have T0,1f0 = (q2 − 1)f0 and
T1,0f0 = (−q2− q)f0. Hence the assertion follows from Corollary 6.3.2 ii). ut

Corollary 6.4.4. Let π be a supercuspidal representation of PGL(2, F ), and
σ an unramified, quadratic character of F×.

i) The T0,1 eigenvalue on the newform of a representation δ(ν1/2π, ν−1/2σ)
of type XIa is λ = qσ($). The T1,0 eigenvalue is µ = −q2.

ii) The T0,1 eigenvalue on the newform of a representation L(ν1/2π, ν−1/2σ)
of type XIb is λ = q(q + 1)σ($). The T1,0 eigenvalue is µ = 0.

Proof. We may assume that σ = 1. There are exact sequences

0 −→ L(ν1/2π, ν−1/2) −→ ν−1/2π o ν1/2 −→ δ(ν1/2π, ν−1/2) −→ 0

and

0 −→ δ(ν1/2π, ν−1/2) −→ ν1/2π o ν−1/2 −→ L(ν1/2π, ν−1/2) −→ 0.

The induced representations in the middle have a unique newform of level n =
a(π). By Proposition 5.5.5, this newform lies in the subspace L(ν1/2π, ν−1/2)
of ν−1/2π o ν1/2. Hence ii) is immediate from Proposition 6.4.2. Let f0 be
the newform in ν1/2π o ν−1/2. By the remarks following Proposition 5.5.5,
the newform in δ(ν1/2π, ν−1/2) is given by θf0 − θ′f0. Hence i) follows from
Proposition 6.4.2 and Corollary 6.3.2 i). ut

Eigenvalues for Klingen Induced Representations

Consider an induced representation χo σπ, where χ and σ are characters of
F× and π = StGSp(2). We assume χσ2 = 1, so that the central character of
χ o σπ is trivial. Let V be a model for π. By Theorem 5.4.2, the minimal
level of χo σπ is n = 2a(σπ). We shall concentrate on the case of unramified
χ and σ, so that n = 2. The double coset space Q(F )\GSp(4, F )/K(p2) is
represented by {1, s1, L1}; see Proposition 5.1.2. By the proof of Theorem
5.4.2, there is an essentially unique K(p2)-invariant vector f in the standard
model of χoσπ, which is supported on Q(F )L1K(p2). It has the property that
f(L1) = v, where v ∈ V is the newform for σπ, with the invariance property

π(
[
a b
c d

]
)v = v for all

[
a b
c d

]
∈

[
o× o
p o×

]
. (6.35)
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Proposition 6.4.5. Let χ and σ be unramified characters of F× with χσ2 =
1. Then the induced representation χoσStGL(2) has minimal level n = 2. Let
f be a non-zero K(p2)-invariant vector. Then

T0,1f = λf with λ = q(σ($) + σ($)−1)

and
T1,0f = µf with µ = −q(q − 1).

Proof. We have (T0,1f)(L1) = A+B + C +D with

A =
∑

x,y,z∈o/p

f(L1


1 y z$−n

1 x y
1

1



$
$

1
1

), (6.36)

B =
∑

x,z∈o/p

f(L1


1 x z$−n

1
1 −x

1



$

1
$

1

), (6.37)

C =
∑

x,y∈o/p

f(L1t2


1 y

1 x y
1

1



$
$

1
1

), (6.38)

D =
∑
x∈o/p

f(L1t2


1 x

1
1 −x

1



$

1
$

1

). (6.39)

(compare (6.30) – (6.33)). We compute

A = q2
∑
x∈o/p

f(


1

1 x
1

1

L1


$
$

1
1

)

= q2
∑
x∈o/p

(σπ)(
[

1 x
1

]
)f(L1


$
$

1
1

)

= q χ($)
∑
x∈o/p

(σπ)(
[

1 x
1

][
$

1

]
)v.

The vector v is the local newform for the representation σπ = σStGL(2),
which may not have trivial central character. However, since σ is unramified,
v is characterized by the property (6.35). Thus, applying the GL(2) Hecke
operator T1 to v produces a multiple of v. The resulting Hecke eigenvalue can
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be computed as in the case of trivial central character, and can be read off
from Table 6.1. Hence we get

A = q χ($)σ($)v = qσ($)−1v.

For each x, z ∈ o we have the matrix identity

L1


1 x z$−2

1
1 −x

1



$

1
$

1



=


$u−1 x zu−1 z$−2

u zu−1$ z$−1

$u−1 −x
u




1
u−1$2 1

1
−u−1$2 1

 , u = 1 + x$.

Since u is a unit, it shows that B = 0. We have

C =
∑

x,y∈o/p

(σπ)(
[

1 x
1

]
)f(L1t2


1 y

1 y
1

1



$
$

1
1

)

=
∑

x,y∈o/p

(σπ)(
[

1 x
1

]
)f(L1


1

y$2 1
1

−y$2 1




1
$

1
$

)

= q
∑

x,y∈o/p

(σπ)(
[

1 x
1

][
$

1

]
)f(


1

1 + y$ 1
1

−1− y$ 1

).

The argument of f is equivalent to s1 in Q(F )\GSp(4, F )/K(p2), showing that
C = 0. Finally,

D = q
∑
x∈o/p

(σπ)(
[

1
$

]
)f(L1


1

1
x$ 1

x$ 1

).

Let D1 be the term of this sum where x = 0, and D2 be the sum over
x ∈ (o/p)×. Evidently,

D1 = q(σπ)(
[

1
$

]
)v.

As for D2, the matrix identity
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L1M1 =


1

1
1 1

1




1 $−1 $−2

1 2 $−1

−1
−1

L1


$−2

1
1 −1

$2 −1


shows that

D2 = q
∑

x∈(o/p)×

(σπ)(
[

1
x$

][
1
1 1

][
1 2
−1

]
)f(L1)

= q
∑

x∈(o/p)×

(σπ)(
[

1
x$ 1

][
1
$

]
)v.

Hence

D = D1 +D2 = q
∑
x∈o/p

(σπ)(
[

1
x$ 1

][
1
$

]
)v.

Similarly as above, the summation amounts to applying T1 to the newform v
for the representation σStGL(2). Hence, by Table 6.1,

D = qσ($)v.

Summarizing, we get

(T0,1f)(L1) = A+D = q(σ($) + σ($)−1)v = q(σ($) + σ($)−1)f(L1),

proving the assertion about λ.
Next we compute µ. By Lemma 6.1.2, (T1,0f)(L1) = A+B with

A =
∑

x,y∈o/p

∑
z∈o/p2

f(L1


1 x

1
1 −x

1




1 y z$−2

1 y
1

1



$2

$
$

1

),

B =
∑

x,y,z∈o/p

f(L1t2


1 x

1
1 −x

1




1 y z$−2+1

1 y
1

1



$2

$
$

1

).

We compute

A =
∑

x,y∈o/p

∑
z∈o/p2

f(


1 y + z$−1 z$−2

1 2$y + z y + z$−1

1
1

L1


1 x

1
1 −x

1



$2

$
$

1

)
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=
∑

x,y∈o/p

∑
z∈o/p2

(σπ)(
[

1 2$y + z
1

]
)f(L1


1 x

1
1 −x

1



$2

$
$

1

).

Now for every x ∈ o,

L1


1 x

1
1 −x

1



$2

$
$

1



=


u−1$2 x$

u$
u−1$ −x

u




1
u−1$2 1

1
−u−1$2 1

 , u = 1 + x$.

Since u is a unit, this identity shows that A = 0. As for B, we have

B = q2σ2($)
∑

x,y,z∈o/p

f(


1

1 + y$ 1
x$ 1
z$ x$ −1− y$ 1

).

Using the identity (2.8) on the matrix
[

1
1 + y$ 1

]
and noting that 1 + y$ is

a unit, we get

B = q2σ2($)
∑

x,y,z∈o/p

f(s1


1 1

1+y$

1
1 − 1

1+y$

1




1
1

x$ 1
z$ x$ 1

)

= q2σ2($)
∑

x,y,z∈o/p

f(s1


1

1
(x+ zu)$ (2xu+ zu2)$ 1

z$ (x+ zu)$ 1

) (u =
−1

1 + y$
)

= q2σ2($)
∑

x,y,z∈o/p

(σπ)(
[

1
z$ 1

]
)f(s1


1

1
(x+ zu)$ 1

(x+ zu)$ 1

)

= q3σ2($)
∑
z∈o/p

∑
x∈(o/p)×

(σπ)(
[

1
z$ 1

]
)f(s1


1

1
x$ 1

x$ 1

).

The identity
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s1


1

1
x$ 1

x$ 1

 =


x−1$ 1

−x−1$−1 $−2

x$
x$−1




1
−x−1$ 1

1
x−1$ 1

 t2
shows that

B = q
∑
z∈o/p

∑
x∈(o/p)×

(σπ)(
[

1
z$ 1

][
−$−1

$

]
)f(


1

−x−1$ 1
1

x−1$ 1

)

= q(q − 1)
∑
z∈o/p

(σπ)(
[

1
z$ 1

][
$−1

1

][
−1

$

]
)v.

= q(q − 1)σ2($−1)
∑
z∈o/p

(σπ)(
[

1
z$ 1

][
1
$

][
1

$

]
)v.

The Atkin–Lehner element
[

1
$

]
has eigenvalue −σ($) on the newform v.

The summation over z amounts to applying T1 to the newform, which yields
another factor σ($). Hence B = −q(q − 1)v, proving the assertion about µ.
ut

Corollary 6.4.6. Let f be the newform of level p3 for σStGSp(4), where σ is
an unramified, quadratic character. Then

T0,1f = λf with λ = σ($)

and
T1,0f = µf with µ = −q2.

Proof. Given the behavior of Hecke operators under twisting, we may assume
that σ = 1. There is an exact sequence

0 −→ StGSp(4) −→ ν2 o ν−1StGSp(2) −→ L(ν2, ν−1StGSp(2)) −→ 0;

see (2.9). Let f0 be the newform of level p2 in ν2 o ν−1StGSp(2). Let p be
the projection from ν2 o ν−1StGSp(2) to L(ν2, ν−1StGSp(2)). Since StGSp(4)

has minimal level p3, we have p(f0) 6= 0, so that p(f0) is the newform for
L(ν2, ν−1StGSp(2)). By Proposition 5.5.13 we have θp(f0) = θ′p(f0). Hence
p(θf0 − θ′f0) = 0. This means that f1 := θf0 − θ′f0 lies in the subspace of
ν2 o ν−1StGSp(2) realizing the representation StGSp(4). Again by Proposition
5.5.13 we have f1 6= 0, so that f1 is the newform for StGSp(4). Using Corollary
6.3.2 and Proposition 6.4.5, it is now easy to compute T0,1f1 and T1,0f1. ut
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6.5 Some Consequences of Unitarity

To close this chapter, we prove that if the representation π is unitary, then
the Hecke operators T0,1 and T1,0 are self-adjoint and hence diagonalizable. As
mentioned at the beginning of this chapter, this will play an important role in
the proof of uniqueness at the minimal level for supercuspidal representations;
see Theorem 7.5.1.

Lemma 6.5.1. Let (π, V ) be a smooth representation of GSp(4, F ) for which
the center acts trivially. Assume that π is unitary with inner product 〈·, ·〉.
Let K be a compact, open subgroup of GSp(4, F ), and fix the Haar measure
on GSp(4, F ) that gives K volume one. For h ∈ GSp(4, F ) let Th be the
characteristic function of KhK. Then

〈Thv, w〉 = 〈v, Th−1w〉

for h ∈ GSp(4, F ) and v, w ∈ V K . That is, Th−1 is the adjoint of Th for
h ∈ GSp(4, F ).

Proof. Let h ∈ GSp(4, F ). Let v, w ∈ V K . Then, by (6.2),

vol(K ∩ hKh−1)〈Thv, w〉 = 〈
∫
K

π(k)π(h)v dk,w〉

=
∫
K

〈π(k)π(h)v, w〉 dk

=
∫
K

〈v, π(h−1)π(k−1)w〉 dk

=
∫
K

〈v, π(h−1)w〉 dk

=
∫
K

〈π(k−1)v, π(h−1)w〉 dk

=
∫
K

〈v, π(k)π(h−1)w〉 dk

= 〈v,
∫
K

π(k)π(h−1)w dk〉

= vol(K ∩ h−1Kh)〈v, Th−1w〉.

Since vol(K ∩ hKh−1) = vol(K ∩ h−1Kh), the proof is complete. ut

Proposition 6.5.2. Let (π, V ) be a smooth representation of GSp(4, F ) for
which the center acts trivially. Assume that π is unitary with inner product
〈·, ·〉. Let n ≥ 0 be a non-negative integer. Then T0,1 : V (n) → V (n) and
T1,0 : V (n)→ V (n) are self-adjoint.
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Proof. Let

h1 =


$
$

1
1

 , h2 =


$2

$
$

1

 ,
so that T0,1 = Th1 and T1,0 = Th2 . The assertion of the lemma follows from
Lemma 6.5.1, the equalities

K(pn)h1K(pn) =


$
$
$
$

K(pn)h−1
1 K(pn)

and

K(pn)h2K(pn) =


$2

$2

$2

$2

K(pn)h−1
2 K(pn),

and the assumption that the center of GSp(4, F ) acts trivially on V . ut

Corollary 6.5.3. Let (π, V ) be an admissible representation of GSp(4, F ) for
which the center acts trivially. Assume that π is unitary with inner product
〈·, ·〉; also, assume that π is paramodular. At any level n ≥ Nπ, the operators
T0,1, T1,0 and T ∗1,0 are self-adjoint, hence diagonalizable. For n = Nπ, they are
simultaneously diagonalizable. The (self-dual) operators T0,1 and T1,0 + T ∗1,0
are simultaneously diagonalizable for arbitrary n.

Proof. All of these Hecke operators are diagonalizable by the previous result.
At the minimal level, T0,1 and T1,0 commute by Corollary 6.2.2 (if Nπ = 1,
then they commute since dimV (Nπ) = 1; see Table A.13). The operators T0,1

and T1,0 + T ∗1,0 always commute by Corollary 6.2.3. ut
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Proofs of the Main Theorems

In this chapter we prove the main results as described in the introduction. To
do so, we use results proved in previous chapters, and an additional new idea:
The computation of Z(s,W ) for W a Hecke eigenvector in a generic represen-
tation at the minimal paramodular level. The formula expresses Z(s,W ) in
terms of Hecke eigenvalues and W (1), and has multiple applications. One ap-
plication is the completion of the proof of uniqueness at the minimal paramod-
ular level and the computation of Hecke eigenvalues in the remaining open
cases. Uniqueness was previously proved for non-supercuspidal representa-
tions; see Theorem 5.6.1. Another application is the computation of L(s, π)
in terms of the basic invariants of the newform, namely the level, the Atkin–
Lehner eigenvalue, and the Hecke eigenvalues; furthermore, this formula for
L(s, π) for generic π motivates the formula for L(s, ϕπ) for non-generic π,
where ϕπ is the L-parameter of π.

The computation of Z(s,W ) is divided naturally into three parts, Nπ = 0,
Nπ = 1 and Nπ ≥ 2. The most difficult case is Nπ ≥ 2, for which we require
an additional auxiliary computation. This is carried out in Sect. 7.3. The final
section of this chapter contains the statements and proofs of all of the main
results of this work.

7.1 Zeta Integrals: The Unramified Case

In this section we consider irreducible, admissible representations of GSp(4, F )
with trivial central character that contain non-zero vectors fixed under the
maximal compact subgroup K = GSp(4, o). Such a fixed vector is unique up
to scalars. In the generic case we shall compute its zeta integral, using the
unramified Hecke algebra H(K) as a tool. The Hecke operators T0,1 and T1,0

defined in (6.3) resp. (6.4) (with n = 0) act on the space of K-fixed vectors
by scalars λ and µ, respectively.
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Lemma 7.1.1. Let χ1, χ2, σ be unramified characters of F× with χ1χ2σ
2 =

1. Let f0 be the essentially unique non-zero GSp(4, o) invariant vector in χ1×
χ2 o σ. Define λ, µ ∈ C by T0,1f0 = λf0 and T1,0f0 = µf0. Then

λ = q3/2σ($)
(
1 + χ1($)

)(
1 + χ2($)

)
and

µ = q2
(
χ1($) + χ2($) + χ1($)−1 + χ2($)−1 + 1− q−2

)
.

Proof. These formulas follow easily from the coset decompositions (6.5) and
(6.6). ut

Let π be a generic, irreducible, admissible representation of GSp(4, F )
with trivial central character. Assume that π is spherical, so that the ψc1,c2
Whittaker model of π contains a non-zero GSp(4, o)-invariant vector W . The
Whittaker function W is determined by the numbers

ci,j := W (


$2i+j

$i+j

$i

1

)

for i, j ∈ Z. Note that ci,j = 0 if i < 0 or j < 0. We define the Hecke
eigenvalues λ and µ as above by T0,1W = λW and T1,0W = µW .

Lemma 7.1.2. The numbers ci,j satisfy the relations

λci,j = q3ci,j+1 + q2ci+1,j−1 + qci−1,j+1 + ci,j−1 (i, j ≥ 0),

(µ− q2 + 1)ci,j = q4ci+1,j + q3ci−1,j+2 + qci+1,j−2 + ci−1,j (i ≥ 0, j ≥ 1),

(µ+ 1)ci,0 = q4ci+1,0 + q3ci−1,2 + ci−1,0 (i ≥ 0).

Proof. These are easy computations using the coset decompositions (6.5) and
(6.6). ut

To compute the zeta integral of W , note that by Lemma 4.1.1

Z(s,W ) =
∫
F×

W (


a
a

1
1

)|a|s−3/2 d×a

= (1− q−1)
∞∑
j=0

c0,jq
−j(s−3/2). (7.1)

For the analogous sum with c1,j instead of c0,j we have the following result.

Lemma 7.1.3. We have the formula

(1− q−1)
∞∑
j=0

c1,jq
−j(s−3/2) =

µ− q2 + 1
q4(1 + q−2s)

Z(s,W ) +
q − 1

q3(1 + q−2s)
c0,0.
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Proof. Multiplying (7.1) with µ− q2 + 1 and using Lemma 7.1.2, we compute

(µ− q2 + 1)Z(s,W ) = (1− q−1)
∞∑
j=0

(µ− q2 + 1)c0,jq−j(s−3/2)

= (1− q−1)
∞∑
j=1

(q4c1,j + qc1,j−2)q−j(s−3/2)

+ (1− q−1)(µ− q2 + 1)c0,0

= (1− q−1)q4
∞∑
j=1

c1,jq
−j(s−3/2) + (1− q−1)q

∞∑
j=2

c1,j−2q
−j(s−3/2)

+ (1− q−1)(µ+ 1)c0,0 − q2(1− q−1)c0,0

= (1− q−1)q4
∞∑
j=1

c1,jq
−j(s−3/2) + (1− q−1)q

∞∑
j=0

c1,jq
−(j+2)(s−3/2)

+ (1− q−1)q4c1,0 − q(q − 1)c0,0

= (1− q−1)q4
∞∑
j=0

c1,jq
−j(s−3/2) + (1− q−1)q1−2(s−3/2)

∞∑
j=0

c1,jq
−j(s−3/2)

− q(q − 1)c0,0

= (1− q−1)q4(1 + q−2s)
∞∑
j=0

c1,jq
−j(s−3/2) − q(q − 1)c0,0.

The assertion follows. ut

Proposition 7.1.4. Let W be the GSp(4, o) invariant vector in the ψc1,c2
Whittaker model of a spherical, generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character. Then

Z(s,W ) =
(1− q−1)W (1)

1− q−3/2λq−s + (q−2µ+ 1 + q−2)q−2s − q−3/2λq−3s + q−4s
,

where λ and µ are the Hecke eigenvalues defined by T0,1W = λW and T1,0W =
µW .

Proof. We multiply (7.1) with λ and compute, using Lemmas 7.1.2 and 7.1.3,

λZ(s,W ) = (1− q−1)
∞∑
j=0

(q3c0,j+1 + q2c1,j−1 + c0,j−1)q−j(s−3/2)

= (1− q−1)q3
∞∑
j=0

c0,j+1q
−j(s−3/2)

+ (1− q−1)q2
∞∑
j=1

c1,j−1q
−j(s−3/2)
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+ (1− q−1)
∞∑
j=1

c0,j−1q
−j(s−3/2)

= (1− q−1)q3
∞∑
j=1

c0,jq
−(j−1)(s−3/2)

+ (1− q−1)q2
∞∑
j=0

c1,jq
−(j+1)(s−3/2)

+ (1− q−1)
∞∑
j=0

c0,jq
−(j+1)(s−3/2)

= (1− q−1)qs+3/2
∞∑
j=1

c0,jq
−j(s−3/2)

+ (1− q−1)q−s+7/2
∞∑
j=0

c1,jq
−j(s−3/2)

+ (1− q−1)q−s+3/2
∞∑
j=0

c0,jq
−j(s−3/2)

= (1− q−1)qs+3/2
( ∞∑
j=0

c0,jq
−j(s−3/2) − c0,0

)
+ q−s+7/2

( µ− q2 + 1
q4(1 + q−2s)

Z(s,W ) +
q − 1

q3(1 + q−2s)
c0,0

)
+ (1− q−1)q−s+3/2

∞∑
j=0

c0,jq
−j(s−3/2)

= qs+3/2Z(s,W )− (1− q−1)qs+3/2c0,0

+ q−s+7/2
( µ− q2 + 1
q4(1 + q−2s)

Z(s,W ) +
q − 1

q3(1 + q−2s)
c0,0

)
+ q−s+3/2Z(s,W ).

Solving for Z(s,W ) proves the asserted formula. ut

To formulate the next result we define, as usual, for a character χ of F×,

L(s, χ) =
{

(1− χ($)q−s)−1 if χ is unramified,
0 if χ is ramified.

Corollary 7.1.5. Let χ1, χ2 and σ be unramified characters of F× with
χ1χ2σ

2 = 1. Assume that the induced representation π = χ1 × χ2 o σ is
irreducible, so that π is a generic, spherical type I representation. Then, after
suitable normalization,

Z(s,W ) = L(s, χ1χ2σ)L(s, χ1σ)L(s, χ2σ)L(s, σ), (7.2)
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where W is a non-zero GSp(4, o)-invariant vector in the ψc1,c2 Whittaker
model of π.

Proof. This follows by combining Proposition 7.1.4 with Lemma 7.1.1, once
we know that W (1) 6= 0. But if W (1) = c0,0 were zero, then c0,j = 0 for all j
by Proposition 7.1.4. The formulas in Lemma 7.1.2 would then imply ci,j = 0
for all i and j. This is impossible since it would mean that W = 0. ut

An alternative way to compute the zeta integral of W is to use the Casselman–
Shalika formula for the spherical Whittaker function. Let αi = χi($), i = 1, 2,
and γ = σ($). By [CS], Theorem 5.4, we have, up to a constant,

W (


$a

$b

$c−b

$c−a

)

= q−2a−b+3c/2 γc
(
αa+3

1 αb+2
2 − αb+2

1 αa+3
2 − αa+3

1 αc−b+1
2 + αb+2

1 αc−a2

+ αc−b+1
1 αa+3

2 − αc−a1 αb+2
2 − αc−b+1

1 αc−a2 + αc−a1 αc−b+1
2

)
, (7.3)

for all integers a, b, c such that a ≥ b and 2b ≥ c (these conditions on a, b, c
are the ones defining the set A− in [CS]). If these conditions are not satisfied,
then W takes the value zero; see Lemma 4.1.2. Using (7.3) and Lemma 4.1.1,
a straightforward calculation gives the same result for Z(s,W ) as in (7.2).
Note that the formula (7.3), and consequently the result (7.2), hold for the
spherical function in any unramified type I representation, not only those
with trivial central character. Hence, the zeta integral of the newform in type
I representations always computes the L-factor of the representation.

7.2 Zeta Integrals: The Level p Case

In this section we shall compute the zeta integral of the newform for a generic,
irreducible, admissible representation with minimal paramodular level p. Be-
ing Iwahori-spherical, such a representation is a subquotient of a representa-
tion induced from an unramified character of the Borel subgroup. See Table
A.13 for a list of all such representations. The level p representations in Table
A.13 are those of type IIa, IVc, Vb, Vc, and VIc, and for each of these the
space of K(p) invariant vectors is one-dimensional. The only generic level p
representations are those of type IIa. Let π = χStGL(2) oσ be such a represen-
tation, with unramified characters χ and σ such that χ2 6= ν±1 and χ 6= ν±3/2.
Let V =W(π, ψc1,c2) be the Whittaker model of π, with c1, c2 ∈ o× as usual.

Let W ∈ V (1) be the newform of π, unique up to scalars. In Sect. 5.1 we
proved that B(F )\GSp(4, F )/K(p) is represented by the two elements 1 and
s1. It follows that W is determined by the numbers
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ci,j := W (


$2i+j

$i+j

$i

1

) (7.4)

and

c′i,j := W (


$2i+j

$i+j

$i

1

 s1). (7.5)

Note that ci,j = 0 if i < 0 or j < 0, and that c′i,j = 0 if i < −1 or j < 1.

Lemma 7.2.1. Let ε be the Atkin–Lehner eigenvalue of W . Then

c′i,j = εci+1,j−1 for all i, j ∈ Z.

Proof. The Atkin–Lehner element of level p is

u1 =


1
−1
−$

$

 s2s1s2,
and ε is defined by π(u1)W = εW . We compute

c′i,j = W (


$2i+j

$i+j

$i

1

 s1)

= W (


$2i+j

$i+j

$i

1

 s1

$−1

1
1
$

 s1s2s1)

= W (


$2i+j

$i+j

$i

1




1
$−1

$
1

 s2s1s2)

= W (


$2i+j

$i+j

$i

1




1
$−1

1
$−1

u1)

= εW (


$2i+j

$i+j

$i

1



$

1
$

1

).

This proves the lemma. ut
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We further define

c′′i,j =
∑

x,y,z∈o/p

W (


$2i+j

$i+j

$i

1




1
x 1
y 1
z y −z 1

).

Lemma 7.2.2. For all i, j ≥ 0 we have

ci,j + q3ci+1,j + qc′i,j + q2c′i−1,j+2 = 0 (7.6)

and
c′i,j + qc′i−1,j+2 + q2ci+1,j + c′′i,j = 0. (7.7)

Consequently, ci,j = qc′′i,j for i, j ≥ 0. Furthermore,

c′′−1,j = −c′−1,j = −εc0,j−1 (7.8)

for all j ≥ 0.

Proof. Let δ1 be the level lowering operator V (1)→ V (0) introduced in Sect.
3.3. Since p is the minimal level, we have δ1W = 0. Formula (7.6) is therefore
an easy consequence of (3.21). Similarly (7.7) and (7.8) follow from (3.20)
(and Lemma 7.2.1). ut

Lemma 7.2.3. Define λ ∈ C by T0,1W = λW . Then we have for all i ≥ 1
and j ≥ 0,

λci,j = q3ci,j+1 + q2ci+1,j−1 + qci−1,j+1 + ci,j−1 + (q2 − 1)c′i−1,j+1. (7.9)

For all j ≥ 0 we have

λc0,j = q3c0,j+1 + q2c1,j−1 + c0,j−1 − c′−1,j+1. (7.10)

Proof. This is a straightforward calculation using Lemma 6.1.2. ut

Lemma 7.2.4. Define µ ∈ C by T1,0W = µW . Then we have for all i ≥ 1
and j ≥ 0

µci,j = q4ci+1,j + q−1ci−1,j (7.11)

and
µc0,j = q4c1,j − εc0,j−1. (7.12)

Here ε is defined by π(u1)W = εW .

Proof. A straightforward calculation using Lemma 6.1.2 gives

µci,j = q4ci+1,j + c′′i−1,j

for i, j ≥ 0 (and c′′i,j = 0 for i < −1). Using Lemma 7.2.2, the assertion follows.
ut
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Proposition 7.2.5. Let π be a generic, irreducible, admissible representation
of GSp(4, F ) with trivial central character, for which the minimal paramodular
level is p (such a representation is necessarily of type IIa). Then dimV (1) = 1,
and for W ∈ V (1) in the ψc1,c2 Whittaker model of π we have

Z(s,W ) =
(1− q−1)W (1)

1− q−3/2(λ+ ε)q−s + (µq−2 + 1)q−2s + εq−1/2q−3s
.

Here λ, µ ∈ C are defined by T0,1W = λW and T1,0W = µW , and ε is the
Atkin–Lehner eigenvalue of W , defined by π(u1)W = εW .

Proof. Since p is the minimal level, π is an Iwahori-spherical representation.
As such it can be realized as a subrepresentation of a representation induced
from an unramified character of the Borel subgroup. A look at Table A.13
shows that IIa is the only generic level p representation, and that dimV (1) =
1.

It follows easily from (7.12) that

(µ+ εq−s+3/2)Z(s,W ) = q4(1− q−1)
∞∑
j=0

c1,jq
−j(s−3/2).

By (7.10) and Lemma 7.2.1 we get

(λ+ ε)c0,j = q3c0,j+1 + q2c1,j−1 + c0,j−1.

Hence

(λ+ ε)Z(s,W ) = (1− q−1)
∞∑
j=0

(λ+ ε)c0,jq−j(s−3/2)

= (1− q−1)
∞∑
j=0

(
q3c0,j+1 + q2c1,j−1 + c0,j−1

)
q−j(s−3/2)

= (1− q−1)q3
∞∑
j=0

c0,j+1q
−j(s−3/2)

+ (1− q−1)q2
∞∑
j=1

c1,j−1q
−j(s−3/2)

+ (1− q−1)
∞∑
j=1

c0,j−1q
−j(s−3/2)

= (1− q−1)q3
∞∑
j=1

c0,jq
−(j−1)(s−3/2)

+ (1− q−1)q2
∞∑
j=0

c1,jq
−(j+1)(s−3/2)
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+ (1− q−1)
∞∑
j=0

c0,jq
−(j+1)(s−3/2)

= (1− q−1)qs+3/2
∞∑
j=1

c0,jq
−j(s−3/2)

+ (1− q−1)q−s+7/2
∞∑
j=0

c1,jq
−j(s−3/2)

+ (1− q−1)q−s+3/2
∞∑
j=0

c0,jq
−j(s−3/2)

= (1− q−1)qs+3/2
( ∞∑
j=0

c0,jq
−j(s−3/2) − c0,0

)
+ q−s+7/2q−4(µ+ εq−s+3/2)Z(s,W )

+ q−s+3/2Z(s,W )

= qs+3/2Z(s,W )− (1− q−1)qs+3/2c0,0

+ q−s−1/2(µ+ εq−s+3/2)Z(s,W )

+ q−s+3/2Z(s,W ).

Solving for Z(s,W ) gives the result. ut

Corollary 7.2.6. Let χ and σ be unramified characters of F× with χ2σ2 = 1
and such that χ2 6= ν±1 and χ 6= ν±3/2. Then χStGL(2) o σ is a generic,
irreducible, admissible representation of type IIa with trivial central character.
Let W be a non-zero K(p)-invariant vector in the ψc1,c2 Whittaker model of
π. Such a vector is unique up to multiples, and upon suitable normalization
we have

Z(s,W ) = L(s, σ)L(s, σ−1)L(s, ν1/2χσ).

Hence, the zeta integral of the newform represents the L-factor of the repre-
sentation.

Proof. We will first prove that Z(s,W ) 6= 0. By Proposition 7.2.5 this is
equivalent to W (1) 6= 0. Assume that W (1) = 0. Then, from Proposition
7.2.5, c0,j = 0 for all j ∈ Z. The formulas in Lemma 7.2.4 further imply that
ci,j = 0 for all i, j ∈ Z. By Lemma 7.2.1, c′i,j = 0 for all i, j ∈ Z. As noted
above, it was proved in Sect. 5.1 that B(F )\GSp(4, F )/K(p) is represented
by the two elements 1 and s1, implying that W is determined by the ci,j and
c′i,j for all i, j ∈ Z. Hence we obtain W = 0, a contradiction. This shows that
Z(s,W ) 6= 0.

In Proposition 6.4.2 we determined the Hecke eigenvalues λ and µ by direct
computations in induced models. The result is

λ = q3/2(σ($) + σ($)−1) + (q + 1)σ($)χ($)
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and
µ = q3/2(σ($) + σ($)−1)σ($)χ($).

Furthermore, by Table A.13, the Atkin–Lehner eigenvalue of the newform is
ε = −σ($)χ($) for representations of type IIa. Substituting all these values
into the formula in Proposition 7.2.5 proves the result about Z(s,W ). Note
that this is the L-function by Table A.8. ut

Remark: Between the values λ, µ and ε there is the relation

λε+ µ+ q + 1 = 0

for representations of type IIa.

7.3 The Operator R

This section computes the values of a certain vector π(s2)RW on matrices
of the form diag($k, $k, 1, 1). These values will be used in the next section,
which considers the case of representations of paramodular level Nπ ≥ 2.
Let (π, V ) be a generic, irreducible, admissible representation of GSp(4, F )
with trivial central character, where V =W(π, ψc1,c2). For W ∈ V we define
RW ∈ V by

RW = q

∫
o

π(


1

λ$n−1 1
1

−λ$n−1 1

)W dλ. (7.13)

Here, the Haar measure on F gives o measure 1. We will primarily apply R
to elements W of V (n), in which case we can write

RW =
∑
λ∈o/p

π(


1

λ$n−1 1
1

−λ$n−1 1

)W.

For W ∈ V denote by ZN (s,W ) the simplified zeta integral occurring in
Lemma 4.1.1, i.e.,

ZN (s,W ) =
∫
F×

W (


a
a

1
1

)|a|s−3/2 d×a. (7.14)

This converges for Real(s) > 3/2−min(u1, . . . , uN ), where u1, . . . , uN are as
in Lemma 2.6.1. The argument is as in the proof of Proposition 2.6.3.
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Lemma 7.3.1. Let n ≥ 2 and W a Klingen vector of level pn. Then

ZN (s, π(s2)RW ) = Z(s, π(s2)RW ).

In particular, this holds for W ∈ V (n).

Proof. It will suffice to show that π(s2)RW is invariant under the elements
from Lemma 4.1.1. We have the following identities for λ, µ ∈ o:

1 µ
1 µ

1
1

 s2


1
λ$n−1 1

1
−λ$n−1 1

 = s2


1

λ$n−1 1
1

−λ$n−1 1



×


1− λµ$n−1 −µ
λ2µ$2n−2 1 + λµ$n−1

1− λµ$n−1 µ
−λ2µ$2n−2 1 + λµ$n−1

 ,


1
1 µ$

1
1

 s2


1
λ$n−1 1

1
−λ$n−1 1



= s2


1

λ$n−1 1
1

−λ$n−1 1




1
1

−λµ$n −$µ 1
−λ2µ$2n−1 −λµ$n 1

 ,


1
1
µ 1

1

 s2


1
λ$n−1 1

1
−λ$n−1 1



= s2


1

λ$n−1 1
1

−$n−1x 1




1
1 −µ

1
1

 .
Since the rightmost elements of each identity are contained in Kl(pn), our
claim follows. ut

Proposition 7.3.2. Let n ≥ 2 and let W ∈ V (n). Then

ZN (s, π(s2)RW ) = Z(s,W ).

Proof. For typesetting reasons we will abbreviate the γ-factor γ(s, π) by γ(s).
By Lemma 7.3.1 and the functional equation (2.60),

ZN (s, π(s2)RW ) = Z(s, π(s2)RW )
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= γ(s)−1Z(1− s, π(s2s1s2


−1

1
1
−1

 s2)RW )

= γ(s)−1Z(1− s, π(s2s1)RW )

= γ(s)−1Z(1− s, π(s2s1)Rπ(s1s2s−1
2 s−1

1 )W )

= γ(s)−1q

∫
o

∫
F×

∫
F

W (


a
a
x 1

1




1 µ$n−1

1 µ$n−1

1
1

 s−1
2 s−1

1 )|a|(1−s)−3/2 dx d×a dµ.

Now 
1

1
x 1

1




1 µ$n−1

1 µ$n−1

1
1



=


1 −xµ$n−1 xµ2$2n−2

1
1 xµ$n−1

1




1 µ$n−1

1 µ$n−1

1
1




1
1
x 1

1

 .
So

ZN (s, π(s2)RW )

= γ(s)−1q

∫
o

∫
F×

∫
F

ψ(−c1xµ$n−1)W (


a
a
x 1

1

 s2s1)|a|−s−1/2 dx d×a dµ

= γ(s)−1q

∫
F×

∫
F

(
∫
o

ψ(−c1xµ$n−1) dµ)W (


a
a
x 1

1

 s2s1)|a|−s−1/2 dx d×a

= γ(s)−1q

∫
F×

∫
v(x)≥1−n

W (


a
a
x 1

1

 s2s1s2)|a|−s−1/2 dx d×a

= γ(s)−1q

∫
F×

∫
v(x)≥1−n

W (


a
a

1
1

 s2s1s2


1 x
1

1
1

)|a|−s−1/2 dx d×a
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= γ(s)−1q(
∫

v(x)≥1−n

dx)
∫
F×

W (


a
a

1
1

 s2s1s2)|a|−s−1/2 d×a

= γ(s)−1q|$|1−n
∫
F×

W (


a
a

1
1

 s2s1s2)|a|−s−1/2 d×a

= γ(s)−1|$|−n
∫
F×

W (


a
a

1
1




1
1
$−n

$−n

un)|a|−s−1/2 d×a

= γ(s)−1|$|−n
∫
F×

W (


$na

$na
1

1

un)|a|−s−1/2 d×a

= γ(s)−1|$|−n
∫
F×

W (


a
a

1
1

un)|$−na|−s−1/2 d×a

= γ(s)−1|$|−n+n(s+1/2)Z(1− s, π(un)W ).

By the functional equation (2.61), the last expression is equal to Z(s,W ).
This completes the computation. ut

Corollary 7.3.3. Let n ≥ 2 and W ∈ V (n). Then

(π(s2)RW )(


$k

$k

1
1

) = W (


$k

$k

1
1

), k ∈ Z.

In particular,

(π(s2)RW )(


$k

$k

1
1

) = 0 for k < 0.

Proof. By Proposition 7.3.2 and Lemma 4.1.1, we have

ZN (s, π(s2)RW ) = Z(s,W ) = ZN (s,W ).

Evidently,
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ZN (s, π(s2)RW ) =
∞∑

k=−∞

(1− q−1)(π(s2)RW )(


$k

$k

1
1

)|$k|s−3/2

and, by Lemma 4.1.2,

ZN (s,W ) =
∞∑
k=0

(1− q−1)W (


$k

$k

1
1

)|$k|s−3/2.

The corollary follows. ut

7.4 Zeta Integrals: The Higher Level Case

In this section we prove the analogues of Proposition 7.1.4 and Proposition
7.2.5 from the first two sections of this chapter for representations of minimal
paramodular level Nπ ≥ 2. As a corollary we obtain the Hecke eigenvalues
for an eigenvector at the minimal paramodular level for all representations
with L(s, π) = 1; these include the generic supercuspidal representations, and
representations of type VIIa, VIIIa and IXa.

In preparation for Hecke operator calculations we begin this section with a
result on a certain Klingen vector of level one below the minimal paramodular
level. We shall come back to this vector at the end of the section.

A Certain Klingen Vector

Let (π, V ) be a generic, irreducible, admissible representation of GSp(4, F )
with trivial central character. Let n ≥ 2 be an integer and W ∈ V (n). We
define

W ′ :=
∑

x,y,z∈o/p

π(


1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1

)W.

It follows from the Iwahori factorization (2.7) that W ′ is a Klingen vector of
level n− 1. Let

ci,j := W (


$2i+j

$i+j

$i

1

), c′i,j := W ′(


$2i+j

$i+j

$i

1

). (7.15)

The following lemma shows that, if n is the minimal level, then the values
of W ′ on diagonal matrices are determined by the values of W on diagonal
matrices.
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Lemma 7.4.1. With the above notations we have

c′i,j = 0 for i < 0.

If in addition n is the minimal paramodular level of π, then

c′i,j = −q2ci+1,j for i ≥ 0.

Proof. A computation shows that
1

−y$n−1 1
−(x+ λz)$n−1 1
−z$n−1 −(x+ λz)$n−1 y$n−1 1




1 −λ
1

1 λ
1



×


1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1




1 λ
1

1 −λ
1

 ∈ K(pn)

for λ, x, y, z ∈ o. Hence, if we abbreviate d = diag($2i+j , $i+j , $i, 1) and let
λ ∈ o, then

c′i,j =
∑

x,y,z∈o/p

W (d


1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1

)

=
∑

x,y,z∈o/p

W (d


1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1




1 λ
1

1 −λ
1

)

=
∑

x,y,z∈o/p

W (d


1 λ

1
1 −λ

1




1
y$n−1 1

(x+ λz)$n−1 1
z$n−1 (x+ λz)$n−1 −y$n−1 1

)

= ψ(c1λ$i)
∑

x,y,z∈o/p

W (d


1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1

).

Since λ ∈ o is arbitrary and c1 ∈ o×, we conclude that ci,j = 0 for i < 0. Now
assume that n is the minimal paramodular level. Then∑

g∈K(pn−1)/Kl(pn−1)

π(g)W ′ = 0.

Hence, by Lemma 3.3.1,
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∑
u∈o/pn−1

W ′(g


1 u$−n+1

1
1

1

) +
∑

v∈o/pn−2

W ′(gtn−1


1 v$−n+2

1
1

1

) = 0

for all g ∈ GSp(4, F ). Choose

g =


$2i+j

$i+j

$i

1

 ,
and let A be the first sum and B be the second sum. Evidently,

A = qn−1W ′(


$2i+j

$i+j

$i

1

) = qn−1 c′i,j .

By definition,

B =
∑

v∈o/pn−2

∑
x,y,z∈o/p

W (gtn−1


1 v$−n+2

1
1

1




1
y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1

).

It is easily checked that the commutator of the two matrices occurring in the
argument lies in K(pn). Hence

B = qn−2
∑

x,y,z∈o/p

W (gtn−1


1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1

)

= qn
∑
x∈o/p

W (


$2i+j

$i+j

$i

1

 tn−1


1

1
x$n−1 1

x$n−1 1

)

= qn
∑
x∈o/p

W (


$2i+j+1

$i+j

$i

$−1

 tn


1
1

x$n−1 1
x$n−1 1

)

= qn
∑
x∈o/p

W (


$2(i+1)+j

$i+1+j

$i+1

1




1 x$−1

1
1 −x$−1

1

)
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= qn
∑
x∈o/p

ψ(c1x$i)W (


$2(i+1)+j

$i+1+j

$i+1

1

).

Therefore B = 0 if i < 0, and B = qn+1ci+1,j if i ≥ 0. The assertion follows
from A+B = 0. ut

Recursion Formulas

For the following lemmas let (π, V ) be a generic, irreducible, admissible repre-
sentation of GSp(4, F ) with trivial central character. We shall eventually prove
that the space of paramodular vectors at the minimal level is one-dimensional.
Consequently, the Hecke operators T0,1 and T1,0 act on this space as scalars.
However, some of the following recursion formulas hold for Hecke eigenvectors
at an arbitrary level.

Lemma 7.4.2. Let n ≥ 2, and let W ∈ V (n) be an eigenvector for T0,1 with
eigenvalue λ. Then the numbers ci,j defined in (7.15) satisfy the relation

λc0,j = q3c0,j+1 + q2c1,j−1 + c0,j−1 for all j ≥ 0. (7.16)

Proof. Evaluating T0,1W = λW at the above diagonal matrix, we compute,
using Lemma 6.1.2 i), for i, j ≥ 0:

λci,j =
∑

x,y,z∈o/p

W (


$2i+j

$i+j

$i

1




1 y z$−n

1 x y
1

1



$
$

1
1

)

+
∑

x,z∈o/p

W (


$2i+j

$i+j

$i

1




1 x z$−n

1
1 −x

1



$

1
$

1

)

+
∑

x,y∈o/p

W (


$2i+j

$i+j

$i

1

 tn


1 y
1 x y

1
1



$
$

1
1

)

+
∑
x∈o/p

W (


$2i+j

$i+j

$i

1

 tn


1 x
1

1 −x
1



$

1
$

1

)

= q3W (


$2i+j

$i+j

$i

1



$
$

1
1

)
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+ q2W (


$2i+j

$i+j

$i

1



$

1
$

1

)

+ q
∑
y∈o/p

W (


$2i+j

$i+j

$i

1




1
y$n 1

1
−y$n 1




1
$

1
$

)

+
∑
x∈o/p

W (


$2i+j

$i+j

$i

1




1
1

x$n 1
x$n 1




1
1
$
$

)

= q3ci,j+1 + q2ci+1,j−1

+ q
∑
y∈o/p

W (


$2i+j−1

$i+j

$i−1

1




1
y$n−1 1

1
−y$n−1 1

)

+
∑
x∈o/p

W (


$2i+j−1

$i+j−1

$i

1




1
1

x$n−1 1
x$n−1 1

).

We claim that the first sum is zero if i = 0. Indeed, for u ∈ o we have[
1

y$n−1 1

][
1 u

1

]
=

[
1 u

1

][
1

y$n−1 1

][
1− uy$n−1 −u2y$n−1

uy2$2n−2 1 + uy$n−1 + u2y2$2n−2

]
, (7.17)

and therefore, by our assumption that n ≥ 2,

W (


$2i+j−1

$i+j

$i−1

1




1
y$n−1 1

1
−y$n−1 1

)

= W (


$2i+j−1

$i+j

$i−1

1




1
y$n−1 1

1
−y$n−1 1




1 u
1

1 −u
1

)

= W (


$2i+j−1

$i+j

$i−1

1




1 u
1

1 −u
1




1
y$n−1 1

1
−y$n−1 1

)
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= ψ(c1$i−1u)W (


$2i+j−1

$i+j

$i−1

1




1
y$n−1 1

1
−y$n−1 1

).

Hence this expression is zero for i = 0. By the above we get

λc0,j = q3c0,j+1 + q2c1,j−1

+
∑
x∈o/p

W (


$j−1

$j−1

1
1




1
1

x$n−1 1
x$n−1 1

).

The sum can be rewritten as

∑
x∈o/p

W (


$j−1

$j−1

1
1




1
1

x$n−1 1
x$n−1 1

 s2)

=
∑
x∈o/p

W (


$j−1

$j−1

1
1

 s2


1
x$n−1 1

1
−x$n−1 1

)

= q

∫
o

W (


$j−1

$j−1

1
1

 s2


1
x$n−1 1

1
−x$n−1 1

) dx

= (π(s2)RW )(


$j−1

$j−1

1
1

),

where R is the operator defined in Sect. 7.3. By Corollary 7.3.3,

(π(s2)RW )(


$k

$k

1
1

) = W (


$k

$k

1
1

) for all k ∈ Z.

Consequently we obtain the asserted formula. ut

To get information about the c1,j−1 term in this formula, we consider the
other Hecke operator T1,0. We define the numbers ci,j and c′i,j as in (7.15).

Lemma 7.4.3. Let n ≥ 2, and let W ∈ V (n) be an eigenvector for T1,0 with
eigenvalue µ. Then
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µci,j = q4ci+1,j + c′i−1,j for all i, j ≥ 0.

For i = 0 we have c′i−1,j = 0, so that

µc0,j = q4c1,j for all j ∈ Z.

Proof. By Lemma 6.1.2 ii) we get for i, j ≥ 0,

µci,j =
∑

x,y∈o/p

∑
z∈o/p2

W (


$2i+j

$i+j

$i

1




1 x
1

1 −x
1




1 y z$−n

1 y
1

1



$2

$
$

1

)

+
∑

x,y,z∈o/p

W (


$2i+j

$i+j

$i

1



tn


1 x

1
1 −x

1




1 y z$−n+1

1 y
1

1



$2

$
$

1

)

= q4W (


$2i+j

$i+j

$i

1



$2

$
$

1

)

+
∑

x,y,z∈o/p

W (


$2i+j

$i+j

$i

1




1
y$n 1
x$n 1
z$n+1 x$n −y$n 1




1
$
$
$2

),

hence

µci,j = q4 ci+1,j +
∑

x,y,z∈o/p

W (


$2i+j−2

$i+j−1

$i−1

1


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1

y$n−1 1
x$n−1 1
z$n−1 x$n−1 −y$n−1 1

). (7.18)

This proves the first equation. For the second one note that c′i,j = 0 for i < 0
by Lemma 7.4.1. ut

Lemma 7.4.4. Assume that Nπ ≥ 2 is the minimal paramodular level of
the irreducible, admissible, generic representation (π, V ) of GSp(4, F ) with
trivial central character. Assume that W ∈ V (Nπ) satisfies T0,1W = λW and
T1,0W = µW with λ, µ ∈ C. Then the numbers ci,j defined in (7.15) satisfy
the following recursion formulas.

µc0,j = q4 c1,j for all j ∈ Z. (7.19)

(µ+ q2)ci,j = q4 ci+1,j for all i ≥ 1, j ∈ Z. (7.20)

λc0,j = q3c0,j+1 + (q−2µ+ 1)c0,j−1 for all j ≥ 0. (7.21)

Proof. The first formula has already been proven in Lemma 7.4.3. Substituting
it into (7.16) we obtain (7.21). The second formula follows by combining
Lemma 7.4.3 with the result c′i−1,j = −q2ci,j (i ≥ 1) from Lemma 7.4.1.
ut

Proposition 7.4.5. Let (π, V ) be a generic, irreducible, admissible represen-
tation of GSp(4.F ) with trivial central character, where V = W(ψc1,c2). As-
sume that for the minimal paramodular level we have Nπ ≥ 2. Let W ∈ V (Nπ)
be a local newform that is an eigenvector for both Hecke operators T0,1 and
T1,0,

T0,1W = λW, T1,0W = µW, λ, µ ∈ C.

Then:

i) W = 0 if and only if W (1) = 0.
ii) The zeta integral of W is given by

Z(s,W ) =
(1− q−1)W (1)

1− q−3/2λq−s + (q−2µ+ 1)q−2s
. (7.22)

In particular, Z(s,W ) is non-zero if W is non-zero.

Proof. i) Assume that W (1) = 0. By the definition above, c0,0 = W (1). Since
we always have ci,j = 0 if i < 0 or j < 0, it follows from (7.21) that c0,j = 0 for
all j. By (7.19) we get that also c1,j = 0 for all j. By (7.20) we then conclude
that ci,j = 0 for all i and j. This means that W vanishes on all diagonal
elements. By Corollary 4.3.8 it follows that W = 0.

ii) By Lemma 4.1.1,
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Z(s,W ) =
∫
F×

W (


a
a

1
1

)|a|s−3/2 d×a

= (1− q−1)
∞∑
j=0

c0,jq
−j(s−3/2).

Multiplying with λ and using the recursion formula (7.21), we get

λZ(s,W ) = (1− q−1)
∞∑
j=0

(
q3c0,j+1 + (q−2µ+ 1)c0,j−1

)
q−j(s−3/2)

= (1− q−1)qs+3/2
( 1
1− q−1

Z(s, w)− c0,0
)

+ (q−2µ+ 1)q−s+3/2Z(s,W ).

Solving for the zeta integral gives

Z(s,W ) =
(1− q−1)c0,0

1− q−3/2λq−s + (q−2µ+ 1)q−2s
.

The result follows since c0,0 = W (1). ut

Proposition 7.4.5 can be used to compute the Hecke eigenvalues for a class
of representations that might be called the “Siegel-cuspidal” representations.

Corollary 7.4.6. Let (π, V ) be a generic, irreducible, admissible representa-
tion of GSp(4.F ) with trivial central character, where V =W(ψc1,c2). Assume
that L(s, π) = 1, and that for the minimal paramodular level we have Nπ ≥ 2
(in particular, this is satisfied for representations of type VII, VIIIa and IXa,
and for generic supercuspidal representations). Let W ∈ V (Nπ) be a non-zero
eigenvector for both Hecke operators T0,1 and T1,0. Then

T0,1W = 0 and T1,0W = −q2W.

The zeta integral of W is constant,

Z(s,W ) = (1− q−1)W (1).

In particular, if we normalize W by W (1) = (1− q−1)−1, then Z(s,W ) = 1 =
L(s, π). The precise shape of this normalized newform is

W (1) = (1− q−1)−1, W (


$2

$
$

1

) = −q−2(1− q−1)−1,

and W (diag($2i+j , $i+j , $i, 1)) = 0 if (i, j) 6= (0, 0) and (i, j) 6= (1, 0).
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Proof. Since L(s, π) is by definition a generator of the fractional ideal I(π) of
C[q−s, qs] consisting of all zeta integrals (see Proposition 2.6.4), the hypothesis
L(s, π) = 1 implies that Z(s,W ) is a polynomial in q−s and qs. But Z(s,W )
is given by the formula (7.22), implying that λ = 0 and µ = −q2. It then
follows from Lemma 7.4.4 that c1,0 = −q−2c0,0 6= 0, and that ci,j = 0 for all
other values of i, j. ut

The Shadow Vector

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ) with triv-
ial central character. Assume that π is paramodular and that the minimal
paramodular level Nπ is ≥ 2. Let W ∈ V (Nπ), W 6= 0, and assume that
T0,1W = λW and T1,0W = µW for some λ, µ ∈ C. In the beginning of this
section we defined the vector

W ′ :=
∑

x,y,z∈o/p

π(


1

y$Nπ−1 1
x$Nπ−1 1
z$Nπ−1 x$Nπ−1 −y$Nπ−1 1

)W. (7.23)

This is a Klingen vector of level Nπ−1; we call it the shadow of the newform.
Although we have no further need for it, the shadow vector may be important
in other contexts. Thus we include the following observations.

Lemma 7.4.7. The vector W ′ is invariant under the group
1 p−(Nπ−2)

1
1

1

 .
Proof. This is a straightforward calculation. ut

Assuming that π is generic, we define the numbers ci,j and c′i,j as in (7.15).

Proposition 7.4.8. Let (π, V ) be a generic, irreducible, admissible represen-
tation of GSp(4, F ) with trivial central character, and let the notations be as
above. Then the following are equivalent.

i) W ′ vanishes on the Klingen parabolic Q(F ).
ii) Z(s,W ′) = 0.
iii) c1,j = 0 for all j ∈ Z.
iv) ci,j = 0 for all i, j ∈ Z with i ≥ 1.
v) The Hecke eigenvalue µ is zero, i.e., T1,0W = 0.

In any case we have Z(s,W ′) = −q−2µZ(s,W ).
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Proof. i) ⇒ ii) This is trivial.
ii) ⇒ iii) follows from Lemma 7.4.1.
iii) ⇒ iv) follows from (7.20) in Lemma 7.4.4.
iv) ⇒ v) Since we know c0,j 6= 0 for some j, this follows from (7.19) in

Lemma 7.4.4.
v) ⇒ i) follows from (7.19) combined with Lemma 7.4.1.
Lemma 7.4.1 and (7.19) show that c′0,j = −q−2µc0,j . Hence we get the last

assertion. ut

A look at Table A.14, which will be proven in the next section, shows that
many representations have T1,0 eigenvalue µ = −q2. For these representations
we have Z(s,W ′) = Z(s,W ). Hence, if the newform is normalized so that its
zeta integral computes the L-factor, the zeta integral of the shadow vector
does as well.

7.5 Main Results

Now we can finally prove the main results of this monograph as described in
the introduction. The order in which the results are presented here differs from
the introduction, because of logical dependencies. The first result, uniqueness
at the minimal level, allows us to speak of the newform of a paramodular
representation.

Theorem 7.5.1 (Uniqueness at the Minimal Level). Let (π, V ) be an
irreducible, admissible representation of GSp(4.F ) with trivial central charac-
ter. Assume that π is paramodular, and let Nπ be the minimal paramodular
level. Then dimV (Nπ) = 1.

Proof. For non-supercuspidal π the statement has already been proven in
Theorem 5.6.1. Assume that π is supercuspidal. If π is non-generic, then π
has no paramodular vectors by Theorem 3.4.3. Assume that π is generic. As a
supercuspidal representation with trivial central character, π is unitarizable.
By Corollary 6.2.2 and Corollary 6.5.3, the operators T0,1 and T1,0 act as
commuting and diagonalizable endomorphism on V (Nπ). Hence there exists a
basis of V (Nπ) consisting of simultaneous eigenvectors for T0,1 and T1,0. Each
such eigenvector has the form given in Corollary 7.4.6. Since paramodular
vectors are determined by their values on diagonal elements (Corollary 4.3.8),
it follows that dimV (Nπ) = 1. ut

Given a paramodular representation (π, V ) with minimal level Nπ, we call
any non-zero vector in V (Nπ) a newform. By Theorem 7.5.1, newforms are
unique up to scalars.

It follows from Theorem 7.5.1 that every paramodular representation
comes with two complex numbers λ and µ attached to it, namely the eigen-
values of the two Hecke operators T0,1 and T1,0 on a newform. We have all the
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information needed to tabulate these numbers for all paramodular represen-
tations. We stress the fact that the two Hecke eigenvalues λ and µ attached
to a paramodular representation are independent of the model in which the
representation is given.

Theorem 7.5.2 (Hecke Eigenvalues). Let (π, V ) be an irreducible, admis-
sible representation of GSp(4, F ) with trivial central character. Assume that
π has non-zero paramodular vectors, and let Nπ be the minimal paramodular
level. Let v ∈ V (Nπ) be non-zero, and define λ, µ ∈ C by

T0,1v = λv, T1,0v = µv.

Then λ and µ are given as in Table A.14 on page 294.

Proof. For group I representations the eigenvalues are given in Lemma 7.1.1
for the unramified case, and follow from Proposition 6.4.2 otherwise. The
eigenvalues for representations of type IIa and IIb also follow from Proposition
6.4.2, except for the unramified IIb case, where they follow from Lemma 7.1.1.

The eigenvalues for the unramified IIIa case follow from Proposition 6.4.5,
and can be deduced from Proposition 6.4.2 for the ramified IIIa case. For the
unramified IIIb case they follow from Lemma 7.1.1.

The eigenvalues for an unramified twist of the Steinberg representation
StGSp(4) were determined in Corollary 6.4.6. In the unramified IVb case they
follow from Proposition 6.4.5, and in all the remaining cases of group IV they
can be determined using Proposition 6.4.2.

Most of the eigenvalues for group V representations follow from Propo-
sition 6.4.2, except for the following: The unramified Vd case follows from
Lemma 7.1.1, and the eigenvalues for the unramified Va case from Corollary
6.4.3.

The eigenvalues for the unramified VIa case follow from Proposition 6.4.5
(using the fact from Theorem 3.4.3 that VIb never has paramodular vectors).
For the unramified VId case they follow from Lemma 7.1.1. For all other type
VI representations the eigenvalues can be deduced from Proposition 6.4.2.

The eigenvalues for representations of type VII, VIIIa and IXa were de-
termined in Corollary 7.4.6. Representations of type VIIIb and IXb are not
paramodular by Theorem 3.4.3.

Eigenvalues for group X are immediate from Proposition 6.4.2. For XIa,b
and unramified σ, see Corollary 6.4.4. For XIa and ramified σ, Proposition
6.4.2 applies, since in this case XIb has no paramodular vectors by Theorem
3.4.3.

Hecke eigenvalues for generic, supercuspidal representations were deter-
mined in Corollary 7.4.6. ut

The following theorem shows that the newform, via its level, Atkin–Lehner
eigenvalue and Hecke eigenvalues, computes the L-function of a generic,
paramodular representation.
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Theorem 7.5.3 (Hecke Eigenvalues and L-functions). Let (π, V ) be a
generic, irreducible, admissible representation of GSp(4, F ) with trivial central
character. Let W be a newform of π, i.e., a non-zero element of the one-
dimensional space V (Nπ). Let

T0,1W = λπW, T1,0W = µπW,

where λπ and µπ are complex numbers.

i) Assume Nπ = 0, so that π is unramified. Then

L(s, π)=
1

1− q−3/2λπq−s + (q−2µπ + 1 + q−2)q−2s − q−3/2λπq−3s + q−4s
.

ii) Assume Nπ = 1, and let π(u1)W = επW , where επ = ±1 is the Atkin–
Lehner eigenvalue of W . Then

L(s, π) =
1

1− q−3/2(λπ + επ)q−s + (q−2µπ + 1)q−2s + επq−1/2q−3s
.

iii) Assume Nπ ≥ 2. Then

L(s, π) =
1

1− q−3/2λπq−s + (q−2µπ + 1)q−2s
.

Proof. This is obtained by evaluating both sides of each formula. The factors
L(s, π) have been evaluated in [Tak]; via Proposition 2.4.4 they appear in
Table A.8. The right hand sides are evaluated by substituting the values for
λπ and µπ from Table A.14. ut

The following theorem summarizes our main results for generic represen-
tations. As already pointed out in the introduction, for this class of represen-
tations the theorem is analogous to the corresponding theorem in the GL(2)
theory.

Theorem 7.5.4 (Generic Main Theorem). Let (π, V ) be a generic, irre-
ducible, admissible representation of GSp(4, F ) with trivial central character.
Then the following statements hold:

i) There exists an n such that V (n) 6= 0, i.e., π is paramodular.
ii) If Nπ is the minimal n such that V (n) 6= 0, then dimV (Nπ) = 1.
iii) Assume V =W(π, ψc1,c2). There exists Wπ ∈ V (Nπ) such that

Z(s,Wπ) = L(s, π).

Proof. i) was proved in Theorem 4.4.1.
ii) was proved in Theorem 7.5.1.
iii) Let W be a non-zero element of V (Nπ). Let λ, µ be the Hecke eigen-

values of W , defined by
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T0,1W = λW, T1,0W = µW.

Then we have the following formulas for the zeta integral of W . If Nπ = 0
(the unramified case),

Z(s,W ) =
(1− q−1)W (1)

1− q−3/2λq−s + (q−2µ+ 1 + q−2)q−2s − q−3/2λq−3s + q−4s

(7.24)
by Proposition 7.1.4. If Nπ = 1, then

Z(s,W ) =
(1− q−1)W (1)

1− q−3/2(λ+ ε)q−s + (µq−2 + 1)q−2s + εq−1/2q−3s
(7.25)

by Proposition 7.2.5. Here ε is the Atkin–Lehner eigenvalue of W , defined by
u1W = εW . If Nπ ≥ 2, then

Z(s,W ) =
(1− q−1)W (1)

1− q−3/2λq−s + (q−2µ+ 1)q−2s
(7.26)

by Proposition 7.4.5. By Theorem 4.3.7, Z(s,W ) 6= 0, therefore W (1) 6= 0. By
normalizing W we may assume that (1 − q−1)W (1) = 1. Then the asserted
equality follows from Theorem 7.5.3. ut

As a consequence of the generic main theorem, we obtain a calculation of
the ε-factor ε(s, π) in terms of basic invariants Nπ and επ of the newform in
a generic representation π. This result is also analogous to the GL(2) theory.

Corollary 7.5.5 (ε-factors of Generic Representations). Let (π, V ) be a
generic, irreducible, admissible representation of GSp(4, F ) with trivial central
character. Let Nπ be the paramodular level of π as in Theorem 7.5.4, and
let επ be the eigenvalue of the Atkin–Lehner involution π(uNπ ) on the one-
dimensional space V (Nπ). Then

ε(s, π) = επq
−Nπ(s−1/2).

Proof. This follows from iii) of Theorem 7.5.4 and (2.61) with W = Wπ and
n = Nπ. ut

The following two theorems show that in any paramodular representation
the oldforms are obtained by applying the level raising operators θ, θ′, η to
the newform and taking linear combinations. The first theorem focuses on
the generic case, where the results are more specific. We point out that other
specific results exist for other classes of representations; see Sections 5.3 and
5.5.

Theorem 7.5.6 (Generic Oldforms Theorem). Let (π, V ) be a generic,
irreducible, admissible representation of GSp(4, F ) with trivial central char-
acter. Let Nπ be the paramodular level of π and let Wπ be the newform as in
Theorem 7.5.4. Then, for any integer n ≥ Nπ,
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dimV (n) =
[
(n−Nπ + 2)2

4

]
.

For n ≥ Nπ, the space V (n) is spanned by the linearly independent vectors

θ′iθjηkWπ, i, j, k ≥ 0, i+ j + 2k = n−Nπ. (7.27)

In particular, all oldforms are obtained by applying level raising operators to
the newform and taking linear combinations.

Proof. We already know that dimV (n) ≥
[

(n−Nπ+2)2

4

]
and that the vectors

(7.27) are linearly independent by Proposition 4.3.9. We need to prove that
if W ∈ V (n), n ≥ Nπ, then W is in the span of the vectors (7.27). We prove
this by induction on n. If n = Nπ, then this follows from ii) of Theorem
7.5.4. Assume that n > Nπ and that the assertion holds for all m such that
Nπ ≤ m < n. Let W ∈ V (n). By iii) of Proposition 4.1.4, Z(s,W )/L(s, π) is a
polynomial in q−s of degree at most n−Nπ. Note that the numberN appearing
in Proposition 4.1.4 is Nπ by Corollary 7.5.5. By Proposition 4.1.3, there
exists a W ′ in the span of the vectors (7.27) such that Z(s,W ′) = Z(s,W ).
Hence W −W ′ is degenerate, and the η Principle Theorem 4.3.7 implies that
W −W ′ = 0, or that n ≥ 2 and W −W ′ = ηW ′′ for some W ′′ ∈ V (n − 2).
Applying the induction hypothesis completes the proof. ut

Theorem 7.5.7 (Oldforms Principle). Let (π, V ) be an irreducible, ad-
missible representation of GSp(4, F ) with trivial central character. Assume
that π is paramodular. If v is a non-zero element of the one-dimensional space
V (Nπ) and n ≥ Nπ, then the space V (n) is spanned by the (not necessarily
linearly independent) vectors

θ′iθjηkv, i, j, k ≥ 0, i+ j + 2k = n−Nπ.

In other words, all oldforms can be obtained from the newform v by applying
level raising operators and taking linear combinations.

Proof. In the non-supercuspidal case this was proven in Theorem 5.6.1 iv). If
π is supercuspidal, then, as a paramodular representation, π is generic; see
Theorem 3.4.3. Hence the result follows from Theorem 7.5.6. ut

One can ask about the relationship between paramodular representations
and L-packets: Should every conjectural L-packet have at most one paramod-
ular representation? The following theorem implies that this is true, because
one can deduce from the desiderata of the conjectural local Langlands cor-
respondence for GSp(4) that any conjectural L-packet with more than one
element must be tempered and contains a unique generic element.

Theorem 7.5.8 (Tempered Representations). Let π be an irreducible,
admissible representation of GSp(4, F ) with trivial central character. Assume
π is tempered. Then π is paramodular if and only if π is generic.
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Proof. If π is supercuspidal, this follows from Theorem 3.4.3 and Theorem
4.4.1. Now assume π is non-supercuspidal. If π is not generic, then, by Table
A.1, π is of type VIb or VIIIb. In this case, Theorem 3.4.3 implies that π is
not paramodular. If π is generic, then π is paramodular by Theorem 4.4.1.
ut

Our final result shows that the newform, via its invariants Nπ, επ, λπ and
µπ, computes the L- and ε-factor of the L-parameter of any non-supercuspidal,
paramodular representation.

Theorem 7.5.9 (Non-supercuspidal Newforms and L- and ε-factors).
Let (π, V ) be a paramodular, non-supercuspidal, irreducible, admissible rep-

resentation of GSp(4, F ) with trivial central character. Let ϕπ : W ′
F →

GSp(4,C) be the L-parameter assigned to π as in Sect. 2.4. Let Nπ be the
minimal paramodular level of π, and let v ∈ V (Nπ) be a non-zero vector.
Let επ be the Atkin–Lehner eigenvalue of v, and let λπ and µπ be the Hecke
eigenvalues of v, defined by T0,1v = λπv and T1,0v = µπv. Then

ε(s, ϕπ) = επq
−Nπ(s−1/2).

i) Assume Nπ = 0, so that π is unramified. Then

L(s, ϕπ)=
1

1− q−3/2λπq−s + (q−2µπ+1+q−2)q−2s − q−3/2λπq−3s + q−4s
.

ii) Assume Nπ = 1. Then

L(s, ϕπ) =
1

1− q−3/2(λπ + επ)q−s + (q−2µπ + 1)q−2s + επq−1/2q−3s
.

iii) Assume Nπ ≥ 2. Then

L(s, ϕπ) =
1

1− q−3/2λπq−s + (q−2µπ + 1)q−2s
.

Proof. The statement ε(s, ϕπ) = επq
−Nπ(s−1/2) was proved in Theorem 5.7.3.

It is easy to compute the L-factors (as defined in (2.48)) of the L-parameters;
the results are listed in Table A.8. The right hand sides of the asserted formulas
can be evaluated by using Table A.14 (for λπ and µπ) and Table A.12 (for
επ). A case-by-case comparison now shows that the formulas hold. ut

Since any paramodular representation is either generic or non-supercuspi-
dal, we conclude that the newform computes the relevant L- and ε-factors of
a paramodular representation.
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Tables for Representations of GSp(4)

A.1 Non-supercuspidal Representations

Table A.1 below gives a list of all irreducible, admissible, non-supercuspidal
representations of GSp(4, F ). We have organized these representations into
eleven groups. Groups I to VI contain representations supported in the min-
imal parabolic subgroup B; groups VII to IX contain representations sup-
ported in the Klingen parabolic subgroup Q; and groups X and XI contain
representations supported in the Siegel parabolic subgroup P .

All the information in Table A.1, as well as the notations, are taken from
[ST]. A more detailed description of the representations listed can be found in
Sect. 2.2. The “tempered” column shows the conditions on the inducing data
under which a representation is tempered. The “ess. L2” column indicates
the essentially square-integrable representations, i.e., those representations
that become square-integrable after suitable twisting. Finally, the rightmost
column indicates the generic representations (see Sect. 2.1 for the precise
definition).
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Table A.1. Non-supercuspidal representations of GSp(4, F )

constituent of representation tempered ess. L2 generic

I χ1 × χ2 o σ (irreducible) χi, σ unit. •

a ν1/2χ× ν−1/2χ o σ χStGL(2) o σ χ, σ unit. •
II

b (χ2 6= ν±1, χ 6= ν±3/2) χ1GL(2) o σ

a χ× ν o ν−1/2σ χ o σStGSp(2) χ, σ unit. •
III

b (χ /∈ {1, ν±2}) χ o σ1GSp(2)

a σStGSp(4) σ unit. • •

b L(ν2, ν−1σStGSp(2))
IV

c
ν2 × ν o ν−3/2σ

L(ν3/2StGL(2), ν
−3/2σ)

d σ1GSp(4)

a δ([ξ, νξ], ν−1/2σ) σ unit. • •

b νξ × ξ o ν−1/2σ L(ν1/2ξStGL(2), ν
−1/2σ)

V
c (ξ2 = 1, ξ 6= 1) L(ν1/2ξStGL(2), ξν

−1/2σ)

d L(νξ, ξ o ν−1/2σ)

a τ(S, ν−1/2σ) σ unit. •

b τ(T, ν−1/2σ) σ unit.
VI

c
ν × 1F× o ν−1/2σ

L(ν1/2StGL(2), ν
−1/2σ)

d L(ν, 1F× o ν−1/2σ)

VII χ o π (irreducible) χ, π unit. •

a τ(S, π) π unit. •
VIII

b
1F× o π

τ(T, π) π unit.

a νξ o ν−1/2π δ(νξ, ν−1/2π) π unit. • •
IX

b (ξ 6= 1, ξπ = π) L(νξ, ν−1/2π)

X π o σ (irreducible) π, σ unit. •

a ν1/2π o ν−1/2σ δ(ν1/2π, ν−1/2σ) π, σ unit. • •
XI

b (ωπ = 1) L(ν1/2π, ν−1/2σ)
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A.2 Unitary Representations

Table A.2 below lists all the irreducible, admissible, unitarizable represen-
tations of GSp(4, F ). The table represents a reformulation of Theorem 4.4,
Proposition 4.7 and Proposition 4.9 of [ST]. We include this table for com-
pleteness only; the unitary property is largely irrelevant for the paramodular
newform theory.

Table A.2 uses the notation e for the exponent of an essentially square
integrable representation. We only need the following two special cases. If χ
is a character of F×, then e(χ) is defined by |χ(x)| = |x|e(χ) for x ∈ F×. If
π is a supercuspidal representation of GL(2, F ), then e(π) is defined by the
condition that ν−e(π)π is unitarizable.

Table A.2. Unitary representations of GSp(4, F )

representation conditions for unitarity

e(χ1) = e(χ2) = e(σ) = 0

χ1 = νβχ, χ2 = νβχ−1, e(σ) = −β,

e(χ) = 0, χ2 6= 1, 0 < β < 1/2

I χ1 × χ2 o σ (irreducible) χ1 = νβ , e(χ2) = 0, e(σ) = −β/2,

χ2 6= 1, 0 < β < 1

χ1 = νβ1χ, χ2 = νβ2χ, e(σ) = (−β1 − β2)/2,

χ2 = 1, 0 ≤ β2 ≤ β1, 0 < β1 < 1, β1 + β2 < 1

e(σ) = e(χ) = 0
a χStGL(2) o σ

χ = ξνβ , e(σ) = −β, ξ2 = 1, 0 < β < 1/2
II

e(σ) = e(χ) = 0
b χ1GL(2) o σ

χ = ξνβ , e(σ) = −β, ξ2 = 1, 0 < β < 1/2

a χ o σStGSp(2) e(σ) = e(χ) = 0
III

b χ o σ1GSp(2) e(σ) = e(χ) = 0

a σStGSp(4) e(σ) = 0

b L(ν2, ν−1σStGSp(2)) never unitary
IV

c L(ν3/2StGSp(2), ν
−3/2σ) never unitary

d σ1GSp(4) e(σ) = 0
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representation conditions for unitarity

a δ([ξ, νξ], ν−1/2σ) e(σ) = 0

b L(ν1/2ξStGL(2), ν
−1/2σ) e(σ) = 0

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) e(σ) = 0

d L(νξ, ξ o ν−1/2σ) e(σ) = 0

a τ(S, ν−1/2σ) e(σ) = 0

b τ(T, ν−1/2σ) e(σ) = 0
VI

c L(ν1/2StGL(2), ν
−1/2σ) e(σ) = 0

d L(ν, 1F× o ν−1/2σ) e(σ) = 0

e(χ) = e(π) = 0

VII χ o π (irreducible) χ = νβξ, π = ν−β/2ρ, 0 < β < 1,

ξ2 = 1, ξ 6= 1, e(ρ) = 0, ξρ = ρ

a τ(S, π) e(π) = 0
VIII

b τ(T, π) e(π) = 0

a δ(νξ, ν−1/2π) e(π) = 0
IX

b L(νξ, ν−1/2π) e(π) = 0

e(σ) = e(π) = 0
X π o σ (irreducible)

π = νβρ, e(σ) = −β, 0 < β < 1/2, ωρ = 1

a δ(ν1/2π, ν−1/2σ) e(σ) = e(π) = 0
XI

b L(ν1/2π, ν−1/2σ) e(σ) = e(π) = 0

π supercuspidal e(ωπ) = 0



A.3 Jacquet Modules 273

A.3 Jacquet Modules

The two tables in this section list the semisimplifications of the normalized
Jacquet modules of all non-supercuspidal representations with respect to the
unipotent radical of the Siegel and Klingen parabolic subgroups. The Jacquet
modules with respect to the unipotent radical of the Siegel parabolic are
representations of GL(2, F ) × F×, and the Jacquet modules with respect to
the unipotent radical of the Klingen parabolic are representations of F× ×
GSp(2, F ). Note that GSp(2, F ) = GL(2, F ); to translate into standard GL(2)
notation, use the formula χoσ = χσ×σ. The last column lists the number of
irreducible constituents. These Jacquet modules were computed using Section
2 of [ST], pages 93–94.

Table A.3. Jacquet modules: The Siegel parabolic

representation semisimplification #

(χ1 × χ2)⊗ σ + (χ−1
1 × χ−1

2 )⊗ χ1χ2σ
I χ1 × χ2 o σ (irreducible)

+(χ1 × χ−1
2 )⊗ χ2σ + (χ2 × χ−1

1 )⊗ χ1σ
4

χStGL(2) ⊗ σ + χ−1StGL(2) ⊗ χ2σ
a χStGL(2) o σ

+(χν1/2 × χ−1ν1/2)⊗ χν−1/2σ
3

II
χ1GL(2) ⊗ σ + χ−11GL(2) ⊗ χ2σ

b χ1GL(2) o σ
+(χν−1/2 × χ−1ν−1/2)⊗ χν1/2σ

3

a χ o σStGSp(2) (χ× ν)⊗ σν−1/2 + (ν × χ−1)⊗ χσν−1/2 2
III

b χ o σ1GSp(2) (χ× ν−1)⊗ σν1/2 + (ν−1 × χ−1)⊗ χσν1/2 2

a σStGSp(4) ν3/2StGL(2) ⊗ ν−3/2σ 1

b L(ν2, ν−1σStGSp(2)) ν3/21GL(2) ⊗ ν−3/2σ + (ν × ν−2)⊗ ν1/2σ 2
IV

c L(ν3/2StGL(2), ν
−3/2σ) ν−3/2StGL(2) ⊗ ν3/2σ + (ν2 × ν−1)⊗ ν−1/2σ 2

d σ1GSp(4) ν−3/21GL(2) ⊗ ν3/2σ 1
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representation semisimplification #

ν1/2ξStGL(2) ⊗ ν−1/2σ
a δ([ξ, νξ], ν−1/2σ)

+ν1/2ξStGL(2) ⊗ ξν−1/2σ
2

ν−1/2ξStGL(2) ⊗ ν1/2σ
b L(ν1/2ξStGL(2), ν

−1/2σ)
+ν1/2ξ1GL(2) ⊗ ξν−1/2σ

2

ν−1/2ξStGL(2) ⊗ ξν1/2σ
V

c L(ν1/2ξStGL(2), ξν
−1/2σ)

+ν1/2ξ1GL(2) ⊗ ν−1/2σ
2

ν−1/2ξ1GL(2) ⊗ ξν1/2σ
d L(νξ, ξ o ν−1/2σ)

+ν−1/2ξ1GL(2) ⊗ ν1/2σ
2

2 · (ν1/2StGL(2) ⊗ ν−1/2σ)
a τ(S, ν−1/2σ)

+ν1/21GL(2) ⊗ ν−1/2σ
3

b τ(T, ν−1/2σ) ν1/21GL(2) ⊗ ν−1/2σ 1
VI

c L(ν1/2StGL(2), ν
−1/2σ) ν−1/2StGL(2) ⊗ ν1/2σ 1

2 · (ν−1/21GL(2) ⊗ ν1/2σ)
d L(ν, 1F× o ν−1/2σ)

+ν−1/2StGL(2) ⊗ ν1/2σ
3

VII χo π 0 0

a τ(S, π) 0 0
VIII

b τ(T, π) 0 0

a δ(νξ, ν−1/2π) 0 0
IX

b L(νξ, ν−1/2π) 0 0

X π o σ π ⊗ σ + π̃ ⊗ ωπσ 2

a δ(ν1/2π, ν−1/2σ) ν1/2π ⊗ ν−1/2σ 1
XI

b L(ν1/2π, ν−1/2σ) ν−1/2π ⊗ ν1/2σ 1
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Table A.4. Jacquet modules: The Klingen parabolic

representation semisimplification #

χ1 ⊗ (χ2 o σ) + χ2 ⊗ (χ1 o σ)
I χ1 × χ2 o σ (irreducible)

+χ−1
2 ⊗ (χ1 o χ2σ) + χ−1

1 ⊗ (χ2 o χ1σ)
4

χν1/2 ⊗ (χν−1/2o σ)
a χStGL(2) o σ

+χ−1ν1/2 ⊗ (χν1/2o χν−1/2σ)
2

χν−1/2 ⊗ (χν1/2oσ)
II

b χ1GL(2) o σ
+χ−1ν−1/2 ⊗ (χν−1/2oχν1/2σ)

2

χ⊗ σStGSp(2) + χ−1 ⊗ χσStGSp(2)
a χ o σStGSp(2)

+ν ⊗ (χ o σν−1/2)
3

III
χ⊗ σ1GSp(2) + χ−1 ⊗ χσ1GSp(2)

b χ o σ1GSp(2)

+ν−1 ⊗ (χ o σν1/2)
3

a σStGSp(4) ν2 ⊗ ν−1σStGSp(2) 1

b L(ν2, ν−1σStGSp(2)) ν−2 ⊗ νσStGSp(2) + ν ⊗ (ν2 o ν−3/2σ) 2
IV

c L(ν3/2StGL(2), ν
−3/2σ) ν2 ⊗ ν−1σ1GSp(2) + ν−1 ⊗ (ν2 o ν−1/2σ) 2

d σ1GSp(4) ν−2 ⊗ νσ1GSp(2) 1

a δ([ξ, νξ], ν−1/2σ) νξ ⊗ (ξ o ν−1/2σ) 1

b L(ν1/2ξStGL(2), ν
−1/2σ) ξ ⊗ (νξ o ξν−1/2σ) 1

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) ξ ⊗ (νξ o ν−1/2σ) 1

d L(νξ, ξ o ν−1/2σ) ν−1/2ξ ⊗ (ξ o ν1/2σ) 1

a τ(S, ν−1/2σ) ν ⊗ (1F× o ν−1/2σ) + 1F× ⊗ σStGSp(2) 2

b τ(T, ν−1/2σ) 1F× ⊗ σStGSp(2) 1
VI

c L(ν1/2StGL(2), ν
−1/2σ) 1F× ⊗ σ1GSp(2) 1

d L(ν, 1F× o ν−1/2σ) 1F× ⊗ σ1GSp(2) + ν−1 ⊗ (1F× o ν1/2σ) 2
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representation semisimplification #

VII χo π χ⊗ π + χ−1 ⊗ χπ 2

a τ(S, π) 1F× ⊗ π 1
VIII

b τ(T, π) 1F× ⊗ π 1

a δ(νξ, ν−1/2π) νξ ⊗ ν−1/2π 1
IX

b L(νξ, ν−1/2π) ν−1ξ ⊗ ν1/2π 1

X π o σ 0 0

a δ(ν1/2π, ν−1/2σ) 0 0
XI

b L(ν1/2π, ν−1/2σ) 0 0
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A.4 The P3-Filtration

Let V be an irreducible, admissible representation of GSp(4, F ) with trivial
central character, and let 0 ⊂ V2 ⊂ V1 ⊂ V0 = VZJ be the P3-filtration from
Theorem 2.5.3. The tables in this section list the semisimplifications of the
quotient V0/V1 and V1/V2. The last column lists the number of irreducible
constituents. These semisimplifications are obtained from the semisimplifi-
cations of the Jacquet modules of V with respect to the Siegel and Klin-
gen parabolic subgroups from Section A.3, using V0/V1

∼= τP3
GL(2)(VNQ

) and

V1/V2
∼= τP3

GL(1)(VU,ψ−1,0). See Theorem 2.5.3. Note that the factor ν3/2 ap-
pearing in all the entries in Table A.6 is a consequence of the fact that the
Jacquet modules in Table A.3 are normalized, while the P3-filtration involves
no normalizations.

Table A.5. P3-filtration: V0/V1

representation s.s.(V0/V1) #

τP3
GL(2)(ν(χ1χ2σ × χ1σ))

+τP3
GL(2)(ν(χ1χ2σ × χ2σ))

I χ1 × χ2 o σ (irreducible)
+τP3

GL(2)(ν(χ1σ × σ))
4

+τP3
GL(2)(ν(χ2σ × σ))

τP3
GL(2)(ν(χ2σ × ν1/2χσ))

a χStGL(2) o σ
+τP3

GL(2)(ν(ν1/2χσ × σ))
2

τP3
GL(2)(ν(χ2σ × ν−1/2χσ))

II

b χ1GL(2) o σ
+τP3

GL(2)(ν(ν−1/2χσ × σ))
2

τP3
GL(2)(νχσStGL(2))

a χ o σStGSp(2) +τP3
GL(2)(νσStGL(2)) 3

+τP3
GL(2)(ν(ν1/2χσ × ν1/2σ))

τP3
GL(2)(ν(χσ1GL(2)))

b χ o σ1GSp(2) +τP3
GL(2)(νσ1GL(2)) 3

III

+τP3
GL(2)(ν(ν−1/2χσ × ν−1/2σ))
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representation s.s.(V0/V1) #

a σStGSp(4) τP3
GL(2)(ν

2σStGL(2)) 1

τP3
GL(2)(σStGL(2))

b L(ν2, ν−1σStGSp(2))
+τP3

GL(2)(ν(ν3/2σ × ν−1/2σ))
2

IV
τP3
GL(2)(ν

2σ1GL(2))
c L(ν3/2StGL(2), ν

−3/2σ)
+τP3

GL(2)(ν(ν1/2σ × ν−3/2σ))
2

d σ1GSp(4) τP3
GL(2)(σ1GL(2)) 1

a δ([ξ, νξ], ν−1/2σ) τP3
GL(2)(ν(ν1/2σ × ν1/2ξσ)) 1

b L(ν1/2ξStGL(2), ν
−1/2σ) τP3

GL(2)(ν(ν1/2ξσ × ν−1/2σ)) 1
V

c L(ν1/2ξStGL(2), ξν
−1/2σ) τP3

GL(2)(ν(ν1/2σ × ν−1/2ξσ)) 1

d L(νξ, ξ o ν−1/2σ) τP3
GL(2)(ν(σ × ξσ)) 1

τP3
GL(2)(ν(ν1/2σ × ν1/2σ))

a τ(S, ν−1/2σ)
+τP3

GL(2)(νσStGL(2))
2

b τ(T, ν−1/2σ) τP3
GL(2)(νσStGL(2)) 1

VI
c L(ν1/2StGL(2), ν

−1/2σ) τP3
GL(2)(νσ1GL(2)) 1

τP3
GL(2)(νσ1GL(2))

d L(ν, 1F× o ν−1/2σ)
+τP3

GL(2)(ν(ν−1/2σ × ν−1/2σ))
2

VII χ o π τP3
GL(2)(νχπ) + τP3

GL(2)(νπ) 2

a τ(S, π) τP3
GL(2)(νπ) 1

VIII
b τ(T, π) τP3

GL(2)(νπ) 1

a δ(νξ, ν−1/2π) τP3
GL(2)(ν

3/2ξπ) 1
IX

b L(νξ, ν−1/2π) τP3
GL(2)(ν

1/2ξπ) 1

X π o σ 0 0

a δ(ν1/2π, ν−1/2σ) 0 0
XI

b L(ν1/2π, ν−1/2σ) 0 0
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Table A.6. P3-filtration: V1/V2

representation s.s.(V1/V2) #

τP3
GL(1)(ν

3/2χ1χ2σ) + τP3
GL(1)(ν

3/2σ)
I χ1 × χ2 o σ (irreducible)

+τP3
GL(1)(ν

3/2χ1σ) + τP3
GL(1)(ν

3/2χ2σ)
4

τP3
GL(1)(ν

3/2χ2σ) + τP3
GL(1)(ν

3/2σ)
a χStGL(2) o σ

+τP3
GL(1)(ν

3/2ν1/2χσ)
3

II
b χ1GL(2) o σ τP3

GL(1)(ν
3/2ν−1/2χσ) 1

a χ o σStGSp(2) τP3
GL(1)(ν

3/2ν1/2χσ) + τP3
GL(1)(ν

3/2ν1/2σ) 2
III

b χ o σ1GSp(2) τP3
GL(1)(ν

3/2ν−1/2χσ) + τP3
GL(1)(ν

3/2ν−1/2σ) 2

a σStGSp(4) τP3
GL(1)(ν

3/2ν3/2σ) 1

b L(ν2, ν−1σStGSp(2)) τP3
GL(1)(ν

3/2ν−1/2σ) 1
IV

c L(ν3/2StGL(2), ν
−3/2σ) τP3

GL(1)(ν
3/2ν−3/2σ) + τP3

GL(1)(ν
3/2ν1/2σ) 2

d σ1GSp(4) 0 0

a δ([ξ, νξ], ν−1/2σ) τP3
GL(1)(ν

3/2ν1/2σ) + τP3
GL(1)(ν

3/2ν1/2ξσ) 2

b L(ν1/2ξStGL(2), ν
−1/2σ) τP3

GL(1)(ν
3/2ν−1/2σ) 1

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) τP3
GL(1)(ν

3/2ν−1/2ξσ) 1

d L(νξ, ξ o ν−1/2σ) 0 0

a τ(S, ν−1/2σ) 2τP3
GL(1)(ν

3/2ν1/2σ) 2

b τ(T, ν−1/2σ) 0 0
VI

c L(ν1/2StGL(2), ν
−1/2σ) τP3

GL(1)(ν
3/2ν−1/2σ) 1

d L(ν, 1F× o ν−1/2σ) τP3
GL(1)(ν

3/2ν−1/2σ) 1

VII χ o π 0 0

a τ(S, π) 0 0
VIII

b τ(T, π) 0 0

a δ(νξ, ν−1/2π) 0 0
IX

b L(νξ, ν−1/2π) 0 0

X π o σ τP3
GL(1)(ν

3/2ωπσ) + τP3
GL(1)(ν

3/2σ) 2

a δ(ν1/2π, ν−1/2σ) τP3
GL(1)(ν

3/2ν1/2σ) 1
XI

b L(ν1/2π, ν−1/2σ) τP3
GL(1)(ν

3/2ν−1/2σ) 1
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A.5 L-Parameters

Table A.7 gives the L-parameters ϕ = (ρ,N) of each non-supercuspidal
representation of GSp(4, F ), as defined in Sect. 2.4. For groups I – VI,
an entry τ1, . . . , τ4 in the “ρ” column stands for the map WF 3 w 7→
diag(τ1(w), . . . , τ4(w)) ∈ GSp(4,C). For groups VII – XI, let π be the super-
cuspidal representation of GL(2, F ) as in Table A.1. The symbol ϕπ stands
for the L-parameter WF → GL(2,C) of π, and ϕ′π is defined in (2.1). The
character ωπ is the central character of π, identified with a character of WF .
Alternatively, ωπ(w) = det(ϕπ(w)). The entries in the ρ column are to be
read in diagonal block notation for groups VII – XI. The nilpotent elements
listed in the “N” column are defined as follows.

N1 =


0

0 1
0

0

 , N2 =


0 1

0
0

0

 , N3 =


0 1

0 1
0

0

 ,

N4 =


0 1

0
0 −1

0

 , N5 =


0 1

0 1
0 −1

0

 .
To define N6, let S be the symmetric matrix from Lemma 2.4.1. Then

N6 =
[

0 B
0 0

]
, where B =

[
1

1

]
S

(see 2.45). Finally, the last column lists the number of elements of

C(ϕ) = Cent(ϕ)/Cent(ϕ)0 C×,

where Cent(ϕ) denotes the centralizer of the image of ϕ, where Cent(ϕ)0 de-
notes its identity component, and where C× stands for the center of GSp(4,C).
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Table A.7. L-parameters

representation ρ N #C

I χ1 × χ2 o σ (irreducible) χ1χ2σ, χ1σ, χ2σ, σ 0 1

a χStGL(2) o σ N1 1
II

b χ1GL(2) o σ
χ2σ, ν1/2χσ, ν−1/2χσ, σ

0 1

a χ o σStGSp(2) N4 1
III

b χ o σ1GSp(2)

ν1/2χσ, ν−1/2χσ, ν1/2σ, ν−1/2σ
0 1

a σStGSp(4) N5 1

b L(ν2, ν−1σStGSp(2)) N4 1
IV

c L(ν3/2StGL(2), ν
−3/2σ)

ν3/2σ, ν1/2σ, ν−1/2σ, ν−3/2σ
N1 1

d σ1GSp(4) 0 1

a δ([ξ, νξ], ν−1/2σ) N3 2

b L(ν1/2ξStGL(2), ν
−1/2σ) N1 1

V
c L(ν1/2ξStGL(2), ξν

−1/2σ)
ν1/2σ, ν1/2ξσ, ν−1/2ξσ, ν−1/2σ

N2 1

d L(νξ, ξ o ν−1/2σ) 0 1

a τ(S, ν−1/2σ)

b τ(T, ν−1/2σ)
N3 2

VI
c L(ν1/2StGL(2), ν

−1/2σ)
ν1/2σ, ν1/2σ, ν−1/2σ, ν−1/2σ

N1 1

d L(ν, 1F× o ν−1/2σ) 0 1

VII χ o π χωπϕ′π, ϕπ 0 1

a τ(S, π)
VIII

b τ(T, π)
ωπϕ′π, ϕπ 0 2

a δ(νξ, ν−1/2π) N6 1
IX

b L(νξ, ν−1/2π)
ξν1/2ωπϕ′π, ν−1/2ϕπ

0 1

X π o σ σωπ, σϕπ, σ 0 1

a δ(ν1/2π, ν−1/2σ) N2 2
XI

b L(ν1/2π, ν−1/2σ)
ν1/2σ, σϕπ, ν−1/2σ

0 1
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A.6 L- and ε-factors (degree 4)

The following Table A.8 lists the L-factors L(s, ϕ) (degree 4) for the L-
parameters ϕ of the non-supercuspidal, irreducible, admissible representations
of GSp(4, F ) (not necessarily with trivial central character). For a character
χ of F×, the symbol L(s, χ) in the tables below has the usual meaning:

L(s, χ) =
{

(1− χ($)q−s)−1 if χ is unramified,
1 if χ is ramified.

Table A.9 lists the ε-factors ε(s, ϕ) for the L-parameters ϕ of the non-
supercuspidal, irreducible, admissible representations of GSp(4, F ) with triv-
ial central character. See Sect. 2.4, in particular (2.48) and (2.49), for the
definitions.
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Table A.8. L-factors L(s, ϕ) (degree 4)

representation L(s, ϕ)

I χ1 × χ2 o σ (irreducible) L(s, χ1χ2σ)L(s, σ)L(s, χ1σ)L(s, χ2σ)

a χStGL(2) o σ L(s, χ2σ)L(s, σ)L(s, ν1/2χσ)
II

b χ1GL(2) o σ L(s, χ2σ)L(s, σ)L(s, ν1/2χσ)L(s, ν−1/2χσ)

a χ o σStGSp(2) L(s, ν1/2χσ)L(s, ν1/2σ)
III

b χ o σ1GSp(2) L(s, ν1/2χσ)L(s, ν1/2σ)L(s, ν−1/2χσ)L(s, ν−1/2σ)

a σStGSp(4) L(s, ν3/2σ)

b L(ν2, ν−1σStGSp(2)) L(s, ν3/2σ)L(s, ν−1/2σ)
IV

c L(ν3/2StGL(2), ν
−3/2σ) L(s, ν3/2σ)L(s, ν1/2σ)L(s, ν−3/2σ)

d σ1GSp(4) L(s, ν3/2σ)L(s, ν1/2σ)L(s, ν−1/2σ)L(s, ν−3/2σ)

a δ([ξ, νξ], ν−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)

b L(ν1/2ξStGL(2), ν
−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)L(s, ν−1/2σ)

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)L(s, ν−1/2ξσ)

d L(νξ, ξ o ν−1/2σ) L(s, ν1/2σ)L(s, ν1/2ξσ)L(s, ν−1/2σ)L(s, ν−1/2ξσ)

a τ(S, ν−1/2σ) L(s, ν1/2σ)2

b τ(T, ν−1/2σ) L(s, ν1/2σ)2

VI
c L(ν1/2StGL(2), ν

−1/2σ) L(s, ν1/2σ)2L(s, ν−1/2σ)

d L(ν, 1F× o ν−1/2σ) L(s, ν1/2σ)2L(s, ν−1/2σ)2

VII χ o π 1

a τ(S, π) 1
VIII

b τ(T, π) 1

a δ(νξ, ν−1/2π) 1
IX

b L(νξ, ν−1/2π) 1

X π o σ L(s, σ)L(s, ωπσ)

a δ(ν1/2π, ν−1/2σ) L(s, ν1/2σ)
XI

b L(ν1/2π, ν−1/2σ) L(s, ν1/2σ)L(s, ν−1/2σ)
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Table A.9. ε-factors ε(s, ϕ) (degree 4)

inducing data a(ϕ) ε(1/2, ϕ)

I a(χ1σ) + a(χ2σ) + 2a(σ) χ1(−1) (= χ2(−1))

σχ unr. 2a(σ) + 1 −σ(−1)(σχ)($)
a

σχ ram. 2a(χσ) + 2a(σ) χ(−1)
II

σχ unr. 2a(σ) χ(−1)
b

σχ ram. 2a(χσ) + 2a(σ) χ(−1)

σ unr. 2 1
a

σ ram. 4a(σ) 1
III

σ unr. 0 1
b

σ ram. 4a(σ) 1

σ unr. 3 −σ($)
a

σ ram. 4a(σ) 1

σ unr. 2 1
b

σ ram. 4a(σ) 1
IV

σ unr. 1 −σ($)
c

σ ram. 4a(σ) 1

σ unr. 0 1
d

σ ram. 4a(σ) 1

σ, ξ unr. 2 −1

σ unr., ξ ram. 2a(ξ) + 1 −σ($)ξ(−1)
a

σ ram., σξ unr. 2a(σ) + 1 −σ(−1)(σξ)($)

σ, σξ ram. 2a(ξσ) + 2a(σ) ξ(−1)
V

σ, ξ unr. 1 σ($)

σ unr., ξ ram. 2a(ξ) ξ(−1)
b

σ ram., σξ unr. 2a(σ) + 1 −ξ(−1)(σξ)($)

σ, σξ ram. 2a(ξσ) + 2a(σ) ξ(−1)
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inducing data a(ϕ) ε(1/2, ϕ)

σ, ξ unr. 1 −σ($)

σ unr., ξ ram. 2a(ξ) + 1 −σ($)
c

σ ram., σξ unr. 2a(σ) ξ(−1)
V

σ, σξ ram. 2a(ξσ) + 2a(σ) ξ(−1)

σ, ξ unr. 0 1
d

σ or ξ ram. 2a(ξσ) + 2a(σ) ξ(−1)

σ unr. 2 1
a

σ ram. 4a(σ) 1

σ unr. 2 1
b

σ ram. 4a(σ) 1
VI

σ unr. 1 −σ($)
c

σ ram. 4a(σ) 1

σ unr. 0 1
d

σ ram. 4a(σ) 1

VII 2a(π) χ(−1) (= ωπ(−1))

a 2a(π) 1
VIII

b 2a(π) 1

a 2a(π) ξ(−1)
IX

b 2a(π) ξ(−1)

X a(σπ) + 2a(σ) σ(−1)ε(1/2, σπ)

σ unr. a(σπ) + 1 −σ($)ε(1/2, σπ)
a

σ ram. a(σπ) + 2a(σ) σ(−1)ε(1/2, σπ)
XI

σ unr. a(σπ) ε(1/2, σπ)
b

σ ram. a(σπ) + 2a(σ) σ(−1)ε(1/2, σπ)
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A.7 L- and ε-factors (degree 5)

Below we describe a homomorphism ρ5 : GSp(4,C)→ SO(5,C). If ϕ : W ′
F →

GSp(4,C) is an L-parameter, then the composition ρ5 ◦ ϕ is a 5-dimensional
representation of W ′

F . The following Table A.10 lists the resulting L-factors
L(s, ρ5 ◦ ϕ) (degree 5) for the L-parameters of the non-supercuspidal, irre-
ducible, admissible representations of GSp(4, F ) (not necessarily with triv-
ial central character). Table A.11 lists the ε-factors ε(s, ρ5 ◦ ϕ) for the L-
parameters of the non-supercuspidal, irreducible, admissible representations
of GSp(4, F ) (not necessarily with trivial central character). See Sect. 2.4, in
particular (2.48) and (2.49), for the definitions.

GSp(4) and SO(5)

It is known that the projective group PGSp(4) is isomorphic to

SO(5) = {g ∈ SL(5) : tgJ5g = J5}, J5 =


1

1
1

1
1

 , (A.1)

as algebraic groups. Over a field k of characteristic not equal to 2 this isomor-
phism can be realized as follows. Let V = k4 be the space of column vectors
of length 4 over k, and let e1, e2, e3, e4 be the standard basis of V . The group
GSp(4, k) acts on V by matrix multiplication from the left, and then also on
the 16-dimensional tensor product space V ⊗ V . Let us denote by ρ this ac-
tion on V ⊗V twisted with the inverse of the multiplier homomorphisms, i.e.,
ρ(g)(v⊗w) = λ(g)−1(gv)⊗ (gw). Then ρ is trivial on the center of GSp(4, k),
and we get an action of PGSp(4, k). We introduce on V the symplectic form

(v, v′) := tv


1

1
−1

−1

 v′,
and on the tensor product V ⊗V the symmetric bilinear form 〈v⊗w, v′⊗w′〉 =
(v, v′)(w,w′). Both bilinear forms are obviously invariant under the action of
Sp(4, k), and one checks easily that 〈 , 〉 is even preserved by the action ρ of
GSp(4, k). Now consider the embedding

V ∧ V −→ V ⊗ V, v ∧ w 7−→ 1
2
(v ⊗ w − w ⊗ v).

The restriction of 〈 , 〉 to V ∧ V is given by

〈v ∧ w, v′ ∧ w′〉 =
1
2
(
(v, v′)(w,w′)− (v, w′)(w, v′)

)
.
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Let X be the image of the 5-dimensional subspace spanned by

x1 = e1 ∧ e2, x2 = 2e1 ∧ e3, x3 = e1 ∧ e4 − e2 ∧ e3,
x4 = e2 ∧ e4, x5 = 2e4 ∧ e3.

One computes that the matrix of 〈 , 〉 with respect to this basis is J5 as
in (A.1). A computation shows that X is invariant under the action ρ of
GSp(4, k). Since 〈 , 〉 is preserved by this action, we get a homomorphism ρ5 :
GSp(4, k)→ SO(5, k). On the Siegel parabolic subgroup P the homomorphism
ρ5 is explicitly given as follows. Let

Ad : GL(2, k) −→ SO(3, k),[
a b
c d

]
7−→ 1

ad− bc

 a2 −ab −b2/2
−2ac ad+ bc bd
−2c2 2cd d2

 .
Then Ad induces an isomorphism PGL(2, k) ∼= SO(3, k). On the standard
Levi component of the Siegel parabolic subgroup we have

ρ5(
[
A
uA′

]
) =

u−1 det(A)
Ad(A)

u det(A)−1

 , (A.2)

while on the unipotent radical ρ5 is given by

ρ5(


1 x z

1 y x
1

1

) =


1 2y 2x −z 2(yz − x2)

1 z
1 −2x

1 −2y
1

 . (A.3)

On the Levi component of the Klingen parabolic subgroup we have

ρ5(


y
a b
c d

y−1(ad− bc)

) =


ya

ad−bc
2yb
ad−bc

yc
2(ad−bc)

yd
ad−bc

1
a/y −2b/y
−c/(2y) d/y

 , (A.4)

and on the unipotent radical

ρ5(


1 x y z

1 y
1 −x

1

) =


1 2y xy − z −2y2

1 −x −x2/2 xy + z
1 x −2y

1
1

 . (A.5)

The map ρ5 is clearly surjective. Its kernel is the center of GSp(4, k), so we
get an isomorphism PGSp(4, k) ∼= SO(5, k).
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Table A.10. L-factors L(s, ρ5 ◦ ϕ) (degree 5)

representation L(s, ρ5 ◦ ϕ)

I χ1 × χ2 o σ (irreducible) L(s, χ1)L(s, χ−1
1 )L(s, χ2)L(s, χ−1

2 )L(s, 1F×)

a χStGL(2) o σ L(s, ν1/2χ)L(s, ν1/2χ−1)L(s, 1F×)

II L(s, ν1/2χ)L(s, ν−1/2χ)
b χ1GL(2) o σ

L(s, ν1/2χ−1)L(s, ν−1/2χ−1)L(s, 1F×)

a χ o σStGSp(2) L(s, χ)L(s, χ−1)L(s, ν)
III

b χ o σ1GSp(2) L(s, χ)L(s, χ−1)L(s, ν)L(s, ν−1)L(s, 1F×)

a σStGSp(4) L(s, ν2)

b L(ν2, ν−1σStGSp(2)) L(s, ν2)L(s, ν)L(s, ν−2)
IV

c L(ν3/2StGL(2), ν
−3/2σ) L(s, ν2)L(s, 1F×)L(s, ν−1)

d σ1GSp(4) L(s, ν2)L(s, ν)L(s, 1F×)L(s, ν−1)L(s, ν−2)

a δ([ξ, νξ], ν−1/2σ) L(s, νξ)L(s, ξ)L(s, 1F×)

b L(ν1/2ξStGL(2), ν
−1/2σ) L(s, νξ)L(s, ξ)L(s, 1F×)

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) L(s, νξ)L(s, ξ)L(s, 1F×)

d L(νξ, ξ o ν−1/2σ) L(s, νξ)L(s, ν−1ξ)L(s, ξ)2L(s, 1F×)

a τ(S, ν−1/2σ)

b τ(T, ν−1/2σ)
L(s, ν)L(s, 1F×)2

VI
c L(ν1/2StGL(2), ν

−1/2σ) L(s, ν)L(s, 1F×)2

d L(ν, 1F× o ν−1/2σ) L(s, ν)L(s, ν−1)L(s, 1F×)3

VII χ o π L(s, χ)L(s, χ−1)L(s, Ad ◦ µ)

a τ(S, π)
VIII

b τ(T, π)
L(s, 1F×)2L(s, Ad ◦ µ)

a δ(νξ, ν−1/2π) L(s, νξ)L(s, Ad ◦ µ)L(s, ξ)−1

IX
b L(νξ, ν−1/2π) L(s, νξ)L(s, ν−1ξ)L(s, Ad ◦ µ)

X π o σ L(s, µ)L(s, det(µ)−1µ)L(s, 1F×)

a δ(ν1/2π, ν−1/2σ) L(s, ν1/2µ)L(s, 1F×)
XI

b L(ν1/2π, ν−1/2σ) L(s, ν1/2µ)L(s, ν−1/2µ)L(s, 1F×)
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Table A.11. ε-factors ε(s, ρ5 ◦ ϕ) (degree 5)

representation a(ρ5 ◦ ϕ) ε(1/2, ρ5 ◦ ϕ)

I χ1 × χ2 o σ (irreducible) 2a(χ1) + 2a(χ2) χ1(−1)χ2(−1)

a χStGL(2) o σ χ unr. : 2, χ ram. : 4a(χ) 1
II

b χ1GL(2) o σ 4a(χ) 1

a χ o σStGSp(2) 2a(χ) + 2 χ(−1)
III

b χ o σ1GSp(2) 2a(χ) χ(−1)

a σStGSp(4) 4 1

b L(ν2, ν−1σStGSp(2)) 2 1
IV

c L(ν3/2StGL(2), ν
−3/2σ) 2 1

d σ1GSp(4) 0 1

a δ([ξ, νξ], ν−1/2σ) ξ unr. : 2, ξ ram. : 4a(ξ) 1

b L(ν1/2ξStGL(2), ν
−1/2σ) ξ unr. : 2, ξ ram. : 4a(ξ) 1

V
c L(ν1/2ξStGL(2), ξν

−1/2σ) ξ unr. : 2, ξ ram. : 4a(ξ) 1

d L(νξ, ξ o ν−1/2σ) 4a(ξ) 1

a τ(S, ν−1/2σ)

b τ(T, ν−1/2σ)
2 1

VI
c L(ν1/2StGL(2), ν

−1/2σ) 2 1

d L(ν, 1F× o ν−1/2σ) 0 1

VII χ o π 2a(χ) + a(Ad ◦ µ) χ(−1)ε( 1
2
, Ad ◦ µ)

a τ(S, π)
VIII

b τ(T, π)
a(Ad ◦ µ) ε( 1

2
, Ad ◦ µ)

ξ unr. : a(Ad ◦ µ) + 2

IX
a δ(νξ, ν−1/2π)

ξ ram. : 2a(ξ) + a(Ad ◦ µ)
ξ(−1)ε( 1

2
, Ad ◦ µ)

b L(νξ, ν−1/2π) 2a(ξ) + a(Ad ◦ µ) ξ(−1)ε( 1
2
, Ad ◦ µ)

X π o σ 2a(µ) det(µ)(−1)

a δ(ν1/2π, ν−1/2σ) 2a(µ) 1
XI

b L(ν1/2π, ν−1/2σ) 2a(µ) 1
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A.8 Paramodular Dimensions and Atkin–Lehner
Eigenvalues

Table A.12 below contains the dimensions of the spaces V (m) of K(pm) invari-
ant vectors for each irreducible, admissible, non-supercuspidal representation
V of GSp(4, F ) with trivial central character. The “N” column gives the min-
imal paramodular level of the representation, provided the representation is
paramodular; a “—” indicates the representation is not paramodular. The
dimensions listed in the “dimV (m)” column hold for any m ≥ N . If m < N ,
then the dimension of V (m) is zero. The last column of the table gives, for the
paramodular representations, the eigenvalue ε of the Atkin–Lehner involution
uN on the local newform (the essentially unique paramodular vector at level
pN ).

See Theorem 5.6.1 and Theorem 5.7.2 for proofs of the statements made
in Table A.12.

Iwahori-spherical representations

The dimension information given in Table A.13 below is already contained
in Table A.12. Listed are the Iwahori-spherical representations of GSp(4, F )
with trivial central character; thus, all the characters in the inducing data are
assumed to be unramified. The column named “V (k)” contains the dimension
of the space V (k) of K(pk) invariant vectors. For k = 0, . . . , 3 we indicated
under the dimension the eigenvalues of the Atkin–Lehner involution uk. These
eigenvalues are correct if one assumes that

• in group II, where the central character is χ2σ2, the character χσ is trivial.
• in groups IV, V and VI, where the central character is σ2, the character

σ itself is trivial.

If these assumptions are not met, then one has to interchange the plus and
minus signs in the V (1) and the V (3) column.

The “a” column gives the conductor of the local parameter attached to
the representation; see Sect. 2.4. Except for VIb, which shares an L-packet
with VIa, this number coincides with the minimal paramodular level. Finally,
the column “ε(1/2, ϕ)” gives the value of the ε-factor at s = 1/2 of the L-
parameter of each representation. In each case, this sign coincides with the
eigenvalue of the Atkin–Lehner involution on the newform.

It is not hard to obtain the information contained in Table A.13 by direct
computations. See Theorem 3.2.9 for details.
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Table A.12. Paramodular dimensions and Atkin–Lehner eigenvalues

inducing data N dim V (m) ε

I a(χ1σ) + a(χ2σ) + 2a(σ) [ (m−N+2)2

4
] χ1(−1) (= χ2(−1))

σχ unr. 2a(σ) + 1 −σ(−1)(σχ)($)
a

σχ ram. 2a(χσ) + 2a(σ)
[ (m−N+2)2

4
]

χ(−1)
II

σχ unr. 2a(σ) [m−N+2
2

] χ(−1)
b

σχ ram. — 0 —

σ unr. 2
a

σ ram. 4a(σ)
[ (m−N+2)2

4
] 1

III
σ unr. 0 m + 1 1

b
σ ram. — 0 —

σ unr. 3 −σ($)
a

σ ram. 4a(σ)
[ (m−N+2)2

4
]

1

σ unr. 2 [m
2

] 1
b

σ ram. — 0 —
IV

σ unr. 1 m −σ($)
c

σ ram. — 0 —

σ unr. 0 1 1
d

σ ram. — 0 —

σ, ξ unr. 2 −1

σ unr., ξ ram. 2a(ξ) + 1 −σ($)ξ(−1)
a

σ ram., σξ unr. 2a(σ) + 1
[ (m−N+2)2

4
]

−σ(−1)(σξ)($)

σ, σξ ram. 2a(ξσ) + 2a(σ) ξ(−1)
V

σ, ξ unr. 1 [m+1
2

] σ($)

σ unr., ξ ram. 2a(ξ) [m−N+2
2

] ξ(−1)
b

σ ram., σξ unr. — 0 —

σ, σξ ram. — 0 —



292 A Tables for Representations of GSp(4)

inducing data N dim V (m) ε

σ, ξ unr. 1 [m+1
2

] −σ($)

σ unr., ξ ram. — 0 —
c

σ ram., σξ unr. 2a(σ) [m−N+2
2

] ξ(−1)
V

σ, σξ ram. — 0 —

σ, ξ unr. 0 1+(−1)m

2
1

d
σ or ξ ram. — 0 —

σ unr. 2
a

σ ram. 4a(σ)
[ (m−N+2)2

4
] 1

σ unr. — 0 —
b

σ ram. — 0 —
VI

σ unr. 1 [m+1
2

] −σ($)
c

σ ram. — 0 —

σ unr. 0 [m+2
2

] 1
d

σ ram. — 0 —

VII 2a(π) [ (m−N+2)2

4
] χ(−1) (= ωπ(−1))

a 2a(π) [ (m−N+2)2

4
] 1

VIII
b — 0 —

a 2a(π) [ (m−N+2)2

4
] ξ(−1)

IX
b — 0 —

X a(σπ) + 2a(σ) [ (m−N+2)2

4
] σ(−1)ε(1/2, σπ)

σ unr. a(σπ) + 1 −σ($)ε(1/2, σπ)
a

σ ram. a(σπ) + 2a(σ)
[ (m−N+2)2

4
]

σ(−1)ε(1/2, σπ)
XI

σ unr. a(σπ) [m−N+2
2

] ε(1/2, σπ)
b

σ ram. — 0 —
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Table A.13. Iwahori-spherical representations of GSp(4, F )

representation a ε(1/2, ϕ) V (0) V (1) V (2) V (3) V (n)

I χ1 × χ2 o σ (irreducible) 0 1 1
+

2
+−

4
+++−

6
+++
−−−

ˆ (n+2)2

4

˜
a χStGL(2) o σ 1 −(σχ)($) 0 1

−
2
+−

4
++−−

ˆ (n+1)2

4

˜
II

b χ1GL(2) o σ 0 1 1
+

1
+

2
++

2
++

ˆ
n+2

2

˜
a χ o σStGSp(2) 2 1 0 0 1

+
2
+−

ˆ
n2

4

˜
III

b χ o σ1GSp(2) 0 1 1
+

2
+−

3
++−

4
++−−

n + 1

a σStGSp(4) 3 −σ($) 0 0 0 1
−

ˆ (n−1)2

4

˜
b L(ν2, ν−1σStGSp(2)) 2 1 0 0 1

+
1
+

ˆ
n
2

˜
IV

c L(ν3/2StGL(2), ν
−3/2σ) 1 −σ($) 0 1

−
2
+−

3
+−−

n

d σ1GSp(4) 0 1 1
+

1
+

1
+

1
+

1

a δ([ξ, νξ], ν−1/2σ) 2 −1 0 0 1
−

2
+−

ˆ
n2

4

˜
b L(ν1/2ξStGL(2), ν

−1/2σ) 1 σ($) 0 1
+

1
+

2
++

ˆ
n+1

2

˜
V

c L(ν1/2ξStGL(2), ξν
−1/2σ) 1 −σ($) 0 1

−
1
+

2
−−

ˆ
n+1

2

˜
d L(νξ, ξ o ν−1/2σ) 0 1 1

+
0 1

+
0 1+(−1)n

2

a τ(S, ν−1/2σ) 2 1 0 0 1
+

2
+−

ˆ
n2

4

˜
b τ(T, ν−1/2σ) 2 1 0 0 0 0 0

VI
c L(ν1/2StGL(2), ν

−1/2σ) 1 −σ($) 0 1
−

1
−

2
−−

ˆ
n+1

2

˜
d L(ν, 1F× o ν−1/2σ) 0 1 1

+
1
+

2
++

2
++

ˆ
n+2

2

˜
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A.9 Hecke Eigenvalues

Table A.14 lists the Hecke eigenvalues of the Hecke operators T0,1 and T1,0

defined in Sect. 6.1 on the newform of an irreducible, admissible representation
of GSp(4, F ) with trivial central character. The “N” column in Table A.14
gives the minimal paramodular level. Representations with no paramodular
vectors have been marked by a “—” in the N , λ and µ columns. Otherwise
λ denotes the eigenvalue of T0,1 on the local newform, and µ denotes the
eigenvalue of T1,0. See Theorem 7.5.2 for how these eigenvalues are computed.

For typesetting reasons, some of the eigenvalues are given as (A), (B), (C)
below.

(A) q2
(
χ1($) + χ2($) + χ1($)−1 + χ2($)−1 + 1− q−2

)
(B) q3/2(q + 1)(χ($) + χ−1($)) + q2 − 1
(C) q2(χ($) + χ−1($) + q + 1) + q − 1

Table A.14. Hecke eigenvalues

inducing data N λ µ

q3/2σ($)
`
1 + χ1($)

σ, χ1, χ2 unr. 0
+χ2($) + χ1($)χ2($)

´ (A)

I σ unr., χ1, χ2 ram. a(χ1) + a(χ2) q3/2(σ($) + σ($)−1) 0

σ ram., σχi unr. 2a(σ) q3/2((χ1σ)($) + (χ2σ)($)) 0

σ ram., σχi ram. 2a(χ1σ) + 2a(σ) 0 −q2

q3/2(σ($) + σ($)−1) q3/2(χ($)
σ, χ unr. 1

+(q + 1)(σχ)($) +χ($)−1)

IIa σ, χ ram., χσ unr. 2a(σ) + 1 q(χσ)($) −q2

σ unr., χσ ram. 2a(χ) q3/2(σ($) + σ($)−1) 0

σ ram., χσ ram. 2a(σ) + 2a(χσ) 0 −q2

q3/2(σ($) + σ($)−1)
σ, χ unr. 0

+q(q + 1)(σχ)($)
(B)

IIb
σ, χ ram., χσ unr. 2a(σ) q(q + 1)(σχ)($) 0

χσ ram. — — —
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inducing data N λ µ

σ unr. 2 q(σ($) + σ($)−1) −q(q − 1)
IIIa

σ ram. 4a(σ) 0 −q2

σ unr. 0 q(q + 1)σ($)(1 + χ($)) (C)
IIIb

σ ram. — — —

σ unr. 3 σ($) −q2

IVa
σ ram. 4a(σ) 0 −q2

σ unr. 2 σ($)(1 + q2) −q(q − 1)
IVb

σ ram. — — —

σ unr. 1 σ($)(q3 + q + 2) q3 + 1
IVc

σ ram. — — —

σ unr. 0 σ($)(q3 + q2 + q + 1) q(q3 + q2 + q + 1)
IVd

σ ram. — — —

ξ, σ unr. 2 0 −q2 − q

σ unr., ξ ram. 2a(ξ) + 1 σ($)q −q2

Va
σ ram., σξ unr. 2a(σ) + 1 −σ($)q −q2

σ, σξ ram. 2a(ξσ) + 2a(σ) 0 −q2

ξ, σ unr. 1 σ($)(q2 − 1) −q2 − q

σ unr., ξ ram. 2a(ξ) σ($)q(q + 1) 0
Vb

σ ram., σξ unr. — — —

σ, σξ ram. — — —

ξ, σ unr. 1 −σ($)(q2 − 1) −q2 − q

σ unr., ξ ram. — — —
Vc

σ ram., σξ unr. 2a(σ) −σ($)q(q + 1) 0

σ, σξ ram. — — —

ξ, σ unr. 0 0 −(q3 + q2 + q + 1)
Vd

ξ or σ ram. — — —
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inducing data N λ µ

σ unr. 2 2qσ($) −q(q − 1)
VIa

σ ram. 4a(σ) 0 −q2

σ unr. — — —
VIb

σ ram. — — —

σ unr. 1 σ($)(q + 1)2 q(q + 1)
VIc

σ ram. — — —

σ unr. 0 2q(q + 1)σ($) (q + 1)(q2 + 2q − 1)
VId

σ ram. — — —

VII 2a(π) 0 −q2

VIIIa 2a(π) 0 −q2

VIIIb — — —

IXa 2a(π) + 1 0 −q2

IXb — — —

σ unr. a(σπ) q3/2(σ($) + σ($)−1) 0
X

σ ram. a(σπ) + 2a(σ) 0 −q2

σ unr. a(σπ) + 1 qσ($) −q2

XIa
σ ram. a(σπ) + 2a(σ) 0 −q2

σ unr. a(σπ) q(q + 1)σ($) 0
XIb

σ ram. — — —

super- generic ≥ 2 0 −q2

cuspidal non-generic — — —
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A.10 Parahori-invariant Vectors

For the convenience of the reader, in this final section we list the dimensions
of the subspaces of vectors fixed by GSp(4, o), K(p), Kl(p), Si(p) and I in
Iwahori-spherical representations. This table appears on p. 269 of [Sch2]. The
Atkin–Lehner eigenvalues for π(u1) listed in this table are correct if one as-
sumes that: in group II, where the central character is χ2σ2, the character
χσ is trivial; in groups IV, V and VI, where the central character is σ2, the
character σ itself is trivial. If these assumptions are not met, then one has to
interchange all plus and minus signs.

Table A.15. Iwahori-spherical representations: Dimensions of spaces of parahori-
invariant vectors

representation a ε(1/2, ϕ) GSp(4, o) K(p) Kl(p) Si(p) I

I χ1 × χ2 o σ (irreducible) 0 1 1 2
+−

4 4
++
−−

8
++++
−−−−

a χStGL(2) o σ 1 −(σχ)($) 0 1
−

2 1
−

4
+−−−II

b χ1GL(2) o σ 0 1 1 1
+

2 3
++−

4
+++−

a χ o σStGSp(2) 2 1 0 0 1 2
+−

4
++−−III

b χ o σ1GSp(2) 0 1 1 2
+−

3 2
+−

4
++−−

a σStGSp(4) 3 −σ($) 0 0 0 0 1
−

b L(ν2, ν−1σStGSp(2)) 2 1 0 0 1 2
+−

3
++−IV

c L(ν3/2StGL(2), ν
−3/2σ) 1 −σ($) 0 1

−
2 1

−
3

+−−

d σ1GSp(4) 0 1 1 1
+

1 1
+

1
+

a δ([ξ, νξ], ν−1/2σ) 2 −1 0 0 1 0 2
+−

b L(ν1/2ξStGL(2), ν
−1/2σ) 1 σ($) 0 1

+
1 1

+
2

++V
c L(ν1/2ξStGL(2), ξν

−1/2σ) 1 −σ($) 0 1
−

1 1
−

2
−−

d L(νξ, ξ o ν−1/2σ) 0 1 1 0 1 2
+−

2
+−

a τ(S, ν−1/2σ) 2 1 0 0 1 1
−

3
+−−

b τ(T, ν−1/2σ) 2 1 0 0 0 1
+

1
+VI

c L(ν1/2StGL(2), ν
−1/2σ) 1 −σ($) 0 1

−
1 0 1

−

d L(ν, 1F× o ν−1/2σ) 0 1 1 1
+

2 2
+−

3
++−
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Frequently Used Notations

F non-archimedean local field of characteristic zero 27
o ring of integers of F 27
p maximal ideal of o 27
$ generator of p 27
v normalized valuation 27
ν normalized absolute value (same as | |) 27
q number of elements of o/p 27
ψ character of F , trivial on o, non-trivial on p−1 27
a(χ) conductor of the character χ 27
J standard symplectic form 27
GSp(4) group of similitudes of a 4-dimensional symplectic space 27
λ multiplier homomorphism on GSp(4) 27
Sp(4) kernel of λ 27
Z center of GSp(4) 28
B Borel subgroup of GSp(4) (upper triangular matrices) 28
U unipotent radical of B 28
P Siegel parabolic subgroup of GSp(4) 29
Q Klingen parabolic subgroup of GSp(4) 29
A′ conjugate-inverse-transpose of the 2× 2 matrix A 29
GJ Jacobi subgroup of GSp(4) 30
ZJ center of GJ 30
W the eight-element Weyl group of GSp(4) 30
s1, s2 Weyl group elements 30
K(pn) paramodular group of level pn 31
un Atkin–Lehner element 31
tn special element in K(pn) 31
Kl(pn) Klingen congruence subgroup of level pn 32
Si(pn) Siegel congruence subgroup of level pn 32
π∨ contragredient of the representation π 33
ωπ central character of the representation π 33
δ modulus character 33
IndGP normalized induction 33
RU normalized Jacquet module 33
ψc1,c2 character of U(F ) 34
W(π, ψc1,c2) Whittaker model of π with respect to ψc1,c2 34
χ1 × χ2 o σ, π o σ, χo π parabolic induction 35
τπ twist of π by the character τ 36
StGL(2) Steinberg representation of GL(2, F ) 37
1GL(2) trivial representation of GL(2, F ) 37
e(χ) exponent of the character χ 38
X∗(T ) algebraic homomorphisms T → Gm 41
X∗(T ) algebraic homomorphisms Gm → T 41
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Ψ based root datum 41
(Ĝ, ι) dual group 41
WF , W ′

F Weil group and Weil–Deligne group of F 47
(ρ,N) representation of the Weil-Deligne group 47
V nil
ρ certain subspace of gl(n,C) consisting of nilpotent elements 47
C(ϕ) = Cent(ϕ)/Cent(ϕ)0 C×, the component group of ϕ 48
sp(2), sp(4) certain representations of the Weil-Deligne group 52
N1, . . . , N6 certain nilpotent elements in the Lie algebra of GSp(4) 53
L(s, ϕ) L-factor of the W ′

F -representation ϕ 60
ε(s, ϕ, ψ) ε-factor of the W ′

F -representation ϕ 60
a(ϕ) conductor of the W ′

F -representation ϕ 60
P3 important subgroup of GL(3) 62
τP3
GL(k) representations of P3 64
VZJ space of coinvariants with respect to ZJ 63
V0, V1, V2 certain subspaces of VZJ (V2 ⊂ V1 ⊂ V0 is the P3-filtration) 66
Z(s,W ) local zeta integral 76
I(π) zeta integral ideal 78
L(s, π) L-function of a generic representation π 81
γ(s, π, ψc1,c2) γ-factor of a generic representation π 81
ε(s, π, ψc1,c2) ε-factor of a generic representation π 82
V (n) space of K(pn) invariant vectors 85
Vpara space of all paramodular vectors (direct sum of the V (n)) 89
θ, θ′ level raising operators V (n)→ V (n+ 1) 91
η level raising operator V (n)→ V (n+ 2) 92
Nπ minimal paramodular level 95
S certain summation operator 100
I Iwahori subgroup 104
δ1, δ2, δ3 level lowering operators 111
p the projection map V → VZJ 119
PW zeta polynomial 126
λji certain linear functionals on a Whittaker model 130
[ ] greatest integer function 147
Li, Mi certain elements of GSp(4, o) 153
Γ1(pn) congruence subgroup of GL(2, o) 156
a(τ) conductor of the L-parameter of the GL(2, F ) representation τ 156
Nτ level of the GL(2, F ) representation τ 156
λ, µ eigenvalues of T0,1 resp. T1,0 on the newform 213
R certain summation operator 248
ZN (s,W ) simplified zeta integral 248
Ad homomorphism GL(2)→ SO(3) 287
ρ5 homomorphism GSp(4)→ SO(5) 287
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