
Irreducible Non-supercuspidal Representations of GSp(4, F )
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• Non-generic representations with support in the Borel subgroup
• Generic representations with support in the Borel subgroup
• Non-generic representations with support in the Klingen parabolic subgroup
• Generic representations with support in the Klingen parabolic subgroup
• Non-generic representations with support in the Siegel parabolic subgroup
• Generic representations with support in the Siegel parabolic subgroup
• Supercuspidal representations

A • in the P–box means that the representation appears as a local component in cusp forms that are CAP with respect to P . A ◦ in the P–box means that the representation appears
a a local component in non-cuspidal liftings from PGL(2) × PGL(2). Similarly for the B and Q boxes. A u◦ means that the representation is unitary if and only if all of the free inducing
data (i.e., χ1, χ2, σ, χ or π) has exponent 0. A u◦+ means that the representation is unitary if and only if the free inducing data has exponent 0, or that some of the free inducing data does
not have exponent 0 and satisfies certain conditions. These conditions appear in a box with the + symbol. It is assumed that the GL inducing data has been put into standard position,
i.e., has non-negative exponents in descending order. An additional unstated condition is that the central character of the representation be unitary. A u\◦ means that the representation is
non-unitary for all choices of the free inducing data. This poster is based on the work by P. Sally and M. Tadić, Induced representations and classifications for GSp(2, F ) and Sp(2, F ),
Société Mathématique de France, Mémoire 52 (1993), 75–133. The poster was produced by Brooks Roberts and Ralf Schmidt. See gsp4.org for more information. (07/2006)
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