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1 SOURCES 2

1 Sources

The main source for these notes is the book Finite Reflection Groups by Benson and Grove,
Springer Verlag, Graduate Texts in Mathematics 99.
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2 Reflections

This course is about finite reflection groups. By definition, these are the finite groups gen-
erated by reflections, and to begin the course I will define reflections. To define reflections,
we need to first recall some material about vector spaces. Throughout the course, we will
often let V = Rn, n-dimensional Euclidean space. This is a vector space over R. For
example, we might consider the real line R, the real plane R2 or R3. Fix a hyperplane P in
V , i.e., a subspace of V of dimension n−1. In the real line R there is only one hyperplane:

•

In R2, they are the lines through the origin:

And in R3, they are the planes through the origin:

The reflection with respect to P is the function

S : V → V

which sends each vector to its mirror image with respect to P . So, for example, in R, there
is only one reflection

••
v

•
S(v)
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In R2 we have:

v

S(v)

What does it mean, exactly, to send a vector to its mirror image with respect to P? To
define this precisely we need to recall that V is equipt with an inner product defined by

(x, y) =

n∑
i=1

xiyi.

As usual, the length of a vector x ∈ V is defined to be

‖x‖ = (x, x)1/2.

The Cauchy-Schwartz inequality asserts that

|(x, y)| ≤ ‖x‖‖y‖

for x, y ∈ V . It follows that if x, y ∈ V are nonzero, then

−1 ≤ (x, y)

‖x‖‖y‖
≤ 1.

If x, y ∈ V are nonzero, then we define the angle between x and y is defined to be the
unique number 0 ≤ θ ≤ π such that

(x, y) = ‖x‖‖y‖ cos θ.

The inner product measures the angle between two vectors, though it is a bit more compli-
cated in that the lengths of x and y are also involved. The term “angle” does make sense
geometrically. For example, suppose that V = R2 and we have:

θ

x

y
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Project x onto y, to obtain ty:

θ

x

y

z

ty

Then we have
x = z + ty.

Taking the inner product with y, we get

(x, y) = (z, y) + (ty, y)

(x, y) = 0 + t(y, y)

(x, y) = t‖y‖2

t =
(x, y)

‖y‖2
.

On the other hand,

cos θ =
‖ty‖
‖x‖

cos θ = t
‖y‖
‖x‖

t =
‖x‖
‖y‖

cos θ.

If we equate the two formulas for t we get (x, y) = ‖x‖‖y‖ cos θ. We say that two vectors
are orthogonal if (x, y) = 0; if x and y are nonzero, this is equivalent to the angle between
x and y being π/2. If (x, y) > 0, then we will say that x and y form an acute angle; this
is equivalent to 0 < θ < π/2. If (x, y) < 0, then we will say that x and y form an obtuse
angle; this is equivalent to π/2 < θ ≤ π. If X is a subset of V , then we define the orthogonal
complement X⊥ of X to be the set of all y ∈ V such that (x, y) = 0 for all x ∈ X. The set
X⊥ is a subspace of V , even if X is not. If W is a subspace of V , then one has

V = W ⊕W⊥.

With these definitions we can give a formal definition of a reflection with respect to a
hyperplane P . From above, we have a decomposition

V = P ⊕ P⊥.
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Since P is n−1 dimensional, P⊥ is one dimensional, and spanned by a single vector. Thus,
to define a linear transformation on V , it suffices to define it on P and P⊥. We define the
reflection with respect to P to be the the linear transformation S : V → V such that
Sx = x for x in P and Sx = −x for x ∈ P⊥. It is easy to see that

S2 = 1;

a reflection has order two in the group of all invertible linear transformations. One can
give a formula for S. Suppose that

P⊥ = Rr.

Then

Proposition 2.1. We have

Sx = x− 2
(x, r)

(r, r)
r.

Proof. Let T be the linear transformation defined by the above formula. If x ∈ P , then
clearly Tx = x. If x ∈ P⊥, say x = cr for some c ∈ R, then

Tx = x− 2
(cr, r)

(r, r)
r

= x− 2cr

= x− 2x

= −x.

It follows that T = S.

Non-zero vectors also define some useful geometric objects. Let r ∈ V be non-zero. We
may consider three sets that partition V :

{x ∈ V : (x, r) > 0}, P = {x ∈ V : (x, r) = 0}, {y ∈ V : (x, r) < 0}.

The first set consists of the vectors that form an acute angle with r, the middle set is the
hyperplane P orthogonal to Rr, and the last set consists of the vectors that form an obtuse
angle with r. We refer to the first and last sets as the half-spaces defined by P . Of course,
r lies in the first half-space. Let S be the reflection with respect to P . Using the formula
from Proposition 2.1 shows that

(Sx, r) = −(x, r)

for x in V , so that S sends one half-space into the other half-space. Also, S acts by the
identity on P . Multiplication by −1 also sends one half-space into the other half-space;
however, while multiplication by −1 preserves P , it is not the identity on P .
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3 The orthogonal group

We will be interested in the finite groups generated by reflections contained in the group
of all invertible linear tranformations. As it turns out every reflection is actually contained
inside a smaller group, called the orthogonal group. The orthogonal group O(V ) is
the set of all linear transformations T of V which preserve the angles between vectors, or
equivalently, all linear transformations T such that

(Tx, Ty) = (x, y)

for x, y ∈ V . It is easy to see every element of the orthogonal group O(V ) is indeed an
invertible linear transformation, and that O(V ) is a subgroup of the group GL(V ) of all
invertible linear transformations on V . Every reflection is contained in O(V ):

Proposition 3.1. If S is a reflection with respect to the hyperplane P , then S is contained
in O(V ).

Proof. Using notation from above, we have for x ∈ V :

(Sx, Sx) = (x− 2
(x, r)

(r, r)
r, x− 2

(x, r)

(r, r)
r)

= (x, x)− 2
(x, r)

(r, r)
(x, r)− 2

(x, r)

(r, r)
(r, x) + 4

(x, r)2

(r, r)2
(r, r)

= (x, x)− 4
(x, r)2

(r, r)
+ 4

(x, r)2

(r, r)

= (x, x).

This proves the proposition.

In a moment we will compute the finite subgroups of O(V ) when V is one, two and
three dimensional. First, however, we will record a couple more general facts.

Proposition 3.2. If T ∈ O(V ) then detT = ±1.

Proof. Let e1, . . . , en be the standard basis for V , regarded as column vectors. We will
prove this by computing (Tei, T ej) in two different ways. First, we have

(Tei, T ej) = (ei, ej) = δij .

On the other hand,
(Tei, T ej) = t(Tei)(Tej) = tei

tTTej .

We thus have
tei

tTTej = δij .

This is also the ij-th entry of tTT . Hence, tTT = 1, and so detT = ±1.
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What is the determinant of a reflection?

Proposition 3.3. If S is the reflection with respect to the hyperplane P , then detS = −1.

Proof. Choose a basis v1, . . . , vn−1 for P . Then r, v1, . . . , vn−1 is a basis for V . The matrix
of S with respect to this basis is: 

−1
1

. . .

1

 .
The determinant of this matrix is −1.

We will say that T ∈ O(V ) is a rotation if detT = 1. This name for elements of
O(V ) with determinant one will be justified by proving that in the cases dimV = 2 and
dimV = 3 a rotation is a rotation in the everyday sense. The subgroup of rotations in
O(V ) is often denoted by SO(V ).

Reflections are not rotations, but a product of an even number of reflections is a rota-
tion. If G is a subgroup of O(V ), then the set of rotations in G forms a normal subgroup
of index at most two:

Proposition 3.4. Let G be a subgroup of O(V ), and let H be the subset of all elements T
G such that detT = 1. Then H is normal in G, and [G : H] ≤ 2.

Proof. The map det : G → {±1} is a homomorphism with kernel H. Hence, H is normal
in G, and G/H embeds in {±1}, proving the result.
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4 Finite subgroups in two dimensions

We will now determine the finite subgroups of O(V ) when n = 1, 2 and 3. The situation
when n = 1 is rather simple. Suppose that T : R → R is in O(V ). Since V is one
dimensional, it is spanned by a single vector, e.g., 1. With respect to this basis, T is given
by multiplication by a number, say c. Since (Tx, Ty) = (x, y) for all x, y ∈ R, we have
c2xy = xy for all x, y ∈ R. This means c = ±1. The maps given by multiplication by ±1
are both in O(V ), and so O(V ) = {±1}. The map −1 is a reflection.

Turning to the case of dimV = 2, we have the following theorem.

Theorem 4.1. Assume that dimV = 2, and let T ∈ O(V ). Then T is either a rotation or
a reflection. If T is a rotation, then there exists 0 ≤ θ < 2π such that the matrix of T is[

cos θ − sin θ
sin θ cos θ

]
with respect to the standard basis for V , and T rotates vectors in the counterclockwise
direction through the angle θ. If T is a reflection, then there exists a 0 ≤ θ < 2π such that
the matrix of T is [

cos θ sin θ
sin θ − cos θ

]
with respect to the standard basis for V .

Proof. Let’s determine the matrix of an arbitrary element T of O(V ) with respect to the
standard basis. Suppose that

Te1 = µe1 + νe2.

Since T preserves lengths, we must have

(Te1, T e1) = (e1, e1)

(µe1 + νe2, µe1 + νe2) = 1

µ2(e1, e1) + µν(e1, e2) + νµ(e2, e1) + ν2(e2, e2) = 1

µ2 + ν2 = 1.

We also have
(Te1, T e2) = (e1, e2) = 0.

This means that, besides being of length one, Te2 is orthogonal to Te1. Since we are in
two dimensional space, it is true that, and easy to prove that, there are only two vectors
in V of length one which are orthogonal to Te1. These are

−νe1 + µe2, −(−νe1 + µe2).

The picture is:
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Te1 = µe1 + νe2

−νe1 + µe2

νe1 − µe2

e2

e1

We find that the matrix of T with respect to the standard basis is[
µ −ν
ν µ

]
or

[
µ ν
ν −µ

]
.

We can analyze this a bit more. As µ2 + ν2 = 1, there exists 0 ≤ θ < 2π such that

µ = cos θ, ν = sin θ.

Then matrix of T is [
cos θ − sin θ
sin θ cos θ

]
or

[
cos θ sin θ
sin θ − cos θ

]
.

Assume that the first possibility holds. Then evidently, as every vector is a linear combi-
nation of e1 and e2, and as T rotates e1 and e2 in the counterclockwise direction by θ, T
is a rotation in the counterclockwise direction by θ:

Te1

Te2

e2

e1
θ

It is also clear that detT = 1 in this case; T is a rotation as defined before.
Next, suppose the second possibility holds. Squaring the matrix for T we find that

T 2 = 1. Since reflections are of order two, perhaps T is a reflection. This is indeed true.
One way to see this is to note that if

x1 = cos
θ

2
e1 + sin

θ

2
e2 x2 = − sin

θ

2
e1 + cos

θ

2
e2

then direct computations show that

Tx1 = x1, Tx2 = −x2.

As (x1, x2) = 0, T is the reflection with respect to the line spanned by x1.
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The picture is:

Te1
e2

e1

x1

x2

θ/2

This proves the theorem.

We can also interpret the theorem in terms of complex numbers. Assume that the
notation is as in the statement of the last theorem, and regard V is regarded as C. If T is
a rotation with angle θ, then T is multiplication by

eiθ = cos θ + i sin θ.

If T is a reflection as in the theorem, then the matrix of T can also be written as

T =

[
cos θ sin θ
sin θ − cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
1
−1

]
.

The matrix on the left is a rotation by θ, i.e., multiplication by eiθ, and the matrix on the
right is the reflection through the x-axis, i.e., complex conjugation.

Corollary 4.2. Assume that dimV = 2. Then the subgroup of rotations in O(V ) is
abelian.

Proof. By Theorem 4.1 the matrix of every rotation with respect to the standard basis has
the form [

µ −ν
ν µ

]
for some µ, ν ∈ R. A calculation shows that matrices of this form commute with each
other.

Corollary 4.3. Assume that dimV = 2. Any two reflections are conjugate to each other
via a rotation.

Proof. We will write elements of O(V ) in the standard basis. Let S be a reflection, so that

S =

[
µ ν
ν −µ

]
for some real numbers µ and ν such that µ2 + ν2 = 1. To prove the corollary, it will suffice
to prove that there exist real numbers a and b, not both zero, such that[

a −b
b a

] [
1
−1

]
=

[
µ ν
ν −µ

] [
a −b
b a

]
.
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This equality holds if and only if[
1− µ −ν
ν −(1 + µ)

] [
a
b

]
=

[
0
0

]
.

Since

det

[
1− µ −ν
ν −(1 + µ)

]
= 0,

this system has a non-zero solution.

Next, we turn to the problem of finding all the finite subgroups of O(V ) when n =
2. What are some examples of finite subgroups of O(V )? Suppose that n is a positive
integer, and let θ = 2π/n. Consider the element R of O(V ) which is a rotation in the
counterclockwise direction through the angle θ. The subgroup generated by R clearly is of
order n, and the elements have matrices

Rk =

[
cos(k2π/n) − sin(k2π/n)
sin(k2π/n) cos(k2π/n)

]
, 0 ≤ k ≤ n− 1

with respect to the standard basis. We will denote this subgroup by Cn2 . This group, of
course, does not contain any reflections.

Are there any more examples? Yes: we can enlarge Cn2 by using a reflection. Let S
be any reflection. Let’s consider the subgroup generated by R and S inside O(V ). Then
RS is also a reflection because detRS = −1, and by the above theorem, RS must be
a reflection. This implies SRSR = 1. This also can be verified geometrically. Hence,
RS = SR−1 = SRn−1. From this, we see that every element of the subgroup generated by
R and S is in the following list:

1, R, . . . , Rn−1, S, SR, . . . , SRn−1.

All the elements on this list are distinct, and so this is the entire group. This group is
called the dihedral group of order 2n, and is denoted by Hn2 . We do not denote the
dependence on S in the notation for the dihedral group. The reason is that these groups
are all very similar, and in fact conjugate to each other inside O(V ) by Corollary 4.2 and
Corollary 4.3. The group Hn2 is generated by reflections, in contrast to Sn2 . The following
theorem proves that these are all the possible finite subgroups of O(V ).

Theorem 4.4. Let V = R2. Then the finite subgroups of O(V ) are the groups Cn2 and Hn2
for n a positive integer.

Proof. Let G be a finite subgroup of O(V ). We have seen that the subgroup H of G of
rotations is of index at most two. Let us first determine the structure of H. If H = 1,
there is nothing more to say; assume H 6= 1. If R ∈ H, then we proved that R is a rotation
through an angle θ in the counterclockwise direction with 0 ≤ θ < 2π. Let R be the
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nontrivial rotation with θ minimal; this exists, as H is finite. Next, for each T ∈ H, pick
an integer m such that

mθ ≤ θ(T ) < (m+ 1)θ.

Then
0 ≤ θ(T )−mθ < θ < 2π.

In fact, θ(T ) −mθ is the angle for a rotation in H, namely R−mT : R−mT is a counter-
clockwise rotation through the angle θ(T ), followed by m clockwise rotations through the
angle θ(R). This means that

θ(R−mT ) = θ(T )−mθ.

By the minimality of θ, this must be zero, which means

T = Rm.

We have proven that H = C|H|2 .
If G = H, we are done; assume H 6= G. Then H is a subgroup of G of index two. Let

S ∈ G with S /∈ H. Then detS = −1; by the above theorem, this implies S is a reflection.
Since H has index two, G is generated by R and S. Therefore, G = Hn2 (for this choice of
S).

We can draw some pictures concerning the dihedral group. Let n be a positive integer,
and set θ = 2π/n. As usual, let R be the rotation through θ degrees. Let S be the reflection
through the x-axis. We consider the dihedral group H generated by R and S. This is also
generated by T = RS and S. What is T? It is a reflection, because it has determinant −1,
and in two dimensions, an element of O(V ) with determinant −1 is a reflection. What line
is it a reflection through? It is the line through the origin which makes an angle θ/2 with
the x-axis. Let us call this line L. Then a useful picture associated with H can be drawn
as follows. Let F be the open region between the x-axis and L. It is not too hard to see
that no two points of F can be mapped to each other using a nonidentity element of F
(certainly, any nonidentity power of R cannot map two points of F to each other; the same
is true for all elements of the form RkS for 0 ≤ k ≤ n− 1). Thus, if we apply the elements
of H to F , we will obtain as many open regions as there are elements of H, namely 2n.
Each of these will be one of other 2n − 1 wedges through an angle θ/2 (applying powers
of R to the wedge F gives n such regions; applying powers of R to SF gives the rest. We
can label each of the wedges with the element which yields this wedge when applied to F .
It gives a kind of picture of H. This is illustrated in the case n = 4:
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T

STSTS

TS

TST

TSTS

1

S

L

We call F a fundamental region for F ; we will discuss fundamental regions for reflection
groups later on.

There is another picture which also helps in understanding H. Let x be the vector of
length one on the line L pointing in the positive direction. If we apply powers of R, we
obtain n vectors of the same length, with an angle 2π/n between each vector. Connect the
vectors with line segments. The result is a regular n-gon X. The group H is the subgroup
of elements of O(V ) which map X to itself: it is the symmetry group of X (certainly, the
symmetry group of X is a finite subgroup of O(V ) containing H. But the symmetry group
can be no bigger by the classification of finite subgroups of O(V )) . In the case n = 4 we
have:

x
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5 Finite subgroups in three dimensions

As in the case of two dimensions, we will determine the finite subgroups of O(V ). Just as
in the the two dimensional case, we first need some general structure theorems about the
elements of O(V ).

Lemma 5.1. Suppose that V has dimension n (not necessarily three), and T ∈ O(V ). If
λ is an eigenvalue of T , then λλ̄ = 1.

Proof. We regard Rn as contained in Cn. We can extend the inner product on Rn to an
inner product on Cn by

(x, y) =
n∑
i=1

xiȳi.

The map T : Rn → Rn extends to a map Cn → Cn by linearity, and we have again
(Tx, Ty) = (x, y) for x, y ∈ Cn. There exists a nonzero vector x in Cn such that Tx = λx.
We get

(x, x) = (Tx, Tx) = λλ̄(x, x).

Since (x, x) 6= 0, we get λλ̄ = 1.

Theorem 5.2. (Euler) Assume that dimV = 3. Let T ∈ O(V ) be a rotation. Then T
is a rotation about a fixed axis, in the sense that T has a eigenvector x with eigenvalue 1
such that the restriction to P = x⊥ is a two dimensional rotation of P .

Proof. Consider the characteristic polynomial of T ; let λ1, λ2 and λ3 be its roots in C. If
λ is a root of the characteristic polynomial, then λ̄ is also a root. Since the characteristic
polynomial of T is of degree three, one of the roots, say λ1, of the characteristic polynomial
is real. By the lemma, λ1 = ±1. In addition, we have detT = λ1λ2λ3 = 1. Hence, λ2λ3

is also real. If λ2 is not real, then λ̄2 = λ3, and λ2λ3 = λ2λ̄2 = 1, so that λ1 = 1. If λ2 is
real, then so is λ3; by the lemma we have λ2 = ±1 and λ3 = ±1; since λ1λ2λ3 = 1, at least
one eigenvalue is 1. We thus, in any case, may assume λ1 = 1. Let x be an eigenvector for
the eigenvalue 1. Consider P = x⊥; we claim that T preserves P . For let y ∈ P . Then

(Ty, x) = (y, T−1x) = (y, x) = 0.

Thus, TP = P . Consider now the restriction of T to P . Since Tx = x, and detT = 1, we
must have det(T |P ) = 1. That is, the restriction of T to P is a rotation.

The previous theorem asserts that in three dimensions, rotations really are rotations in
the everyday sense.

In the two dimensional case it was also important to understand the elements of O(V )
with determinant −1: what can be said in the three dimensional case about such elements?
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Theorem 5.3. Suppose T ∈ O(V ) has detT = −1. Then T is a reflection through a plane
P , followed by a rotation about the line through the origin orthogonal to P .

Proof. Arguing just as in the proof of the last theorem, −1 is an eigenvalue for T . Let
x be an eigenvector of eigenvalue −1. Again, let P = x⊥. Just as before, TP = P ; and
now detT |P = 1. This means that T |P is a rotation. We can choose an orthonormal basis
x2, x3 for P such that the matrix for T |P is:[

cos θ − sin θ
sin θ cos θ

]
for some 0 ≤ θ < 2π. The matrix of T in the basis x, x2, x3 is−1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 .
We can write this as 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

−1 0 0
0 1 0
0 0 1

 .
The matrix on the right is that of the reflection through P ; it is followed by the rotation
about the line through the origin orthogonal to P through an angle θ.

We will start our classification of the finite subgroups of O(V ) when V is three dimen-
sional by first determining finite subgroups consisting of rotations. It will be easy to obtain
all finite subgroups of O(V ) from a list of all finite rotation subgroups since 3 is odd.

To start, we consider the rotation subgroups that come from two dimensions. Let
V = R3, and inside V pick a plane W through the origin; we call it W instead of P
because we want to distinguish it from the hyperplane determining a reflection. It turns
out that there is a way to extend any element of O(W ) to a rotation of V . Define

O(W ) ↪→ SO(V )

by sending T ∈ O(W ) to the map T : V → V defined by letting T be defined as before on
W , and by letting Tx = detT · x for x ∈W⊥. In terms of matrices, this map is given by

T 7→
[
detT 0

0 T

]
.

It is clear that this map is a homomorphism, and thus gives an injection of O(W ) into
SO(V ).

What finite rotation subgroups do we obtain by using this map? Before, we saw that
the finite subgroups of rotations in two dimensions were the cyclic subgroups Cn2 for positive
integers n. Using the above inclusion, we obtain finite cyclic subgroups of rotations in O(V )
which we will denote by Cn3 . In terms of pictures, we have:
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θ

W

W⊥

In addition to finite cyclic groups, O(W ) also contains the finite dihedral groups. We
will denote the image of Hn2 by Hn3 . It is natural to wonder what happens to the element
S of Hn2 under the inclusion. In O(W ) it is a reflection, but it maps to a rotation in three
dimensions. It is the rotation through an angle π around the line L. The picture is:

π

W

W⊥

L

How many different finite rotation subgroups of O(V ) do we obtain in this way? Based on
group structure and orders, the only possible pair of subgroups that could be isomorphic are
S2

3 andH1
3, which both have order two. Each of these consists of the identity transformation

along with another element which is a rotation through π degrees.
What about other finite rotation groups? We saw in two dimensions that the finite

subgroups of SO(W ) and O(W ) arise as symmetry groups of the regular n-gons. It is thus
natural to consider the same kind of source in three dimensions. There are five regular
convex polyhedra in three dimensions: the tetrahedron, the octahedron, the cube, the
dodecahedron, and the icosahedron. We regard this as being centered at the origin in
R3. We ask: what are the rotations which preserve these polyhedra, i.e., what are the
rotational symmetry groups of these solids? In fact, the octahedron and the cube have the
same rotational symmetry group, and the dodecahedron and the icosahedron have the same
rotation symmetry group. The reason is because these members of these pairs of solids are
dual to each other: if in one member one connects the center points of the faces, then one
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gets the other member of the pair. Thus, we need to only consider the tetrahedron, the
cube, and the icosahedron.

We will denote the rotational symmetry group of the tetrahedron by T . The elements
of T can be listed as follows. If we draw a line from a vertex through the center point of the
opposite face, then there are two rotations about this axis which preserve the tetrahedron,
through angles 2π/3 and 2 · 2π/3. Next, we can pick the midpoint of an edge, and draw
the line through the midpoint of the opposite edge: there is a rotation through an angle π
through this axis which preserves the tetrahedron. Of course, T also contains the identity
transformation. So we obtain:

|T | = 4 · 2 + 3 · 1 + 1 = 12.

Next, letW be the rotational symmetry group of the cube. Besides the identity element,
W consists of: the rotations around the axes through the center points of opposite faces
with angles 2π/4, 2 · 2π/4 and 3 · 2π/4; the rotations around the axes through opposing
vertices with angles 2π/3 and 2·2π/3; and the rotations around the axes through the center
points of opposing edges with angle 2π/2. Hence,

|W| = 3 · 3 + 4 · 2 + 6 · 1 + 1 = 24.

Finally, let I be the rotational symmetry group of the icosahedron. It has 20 faces,
30 edges, and 12 vertices. Besides the identity element, I consists of: the rotations about
the axes through the center points of opposing faces with angles 2π/3 and 2 · 2π/3; the
rotations about the axes through opposing vertices with angles 2π/5, 2 · 2π/5, 3 · 2π/5 and
4 · 2π/5; the rotations though the center points of opposing edges with angle 2π/2. Hence,

|I| = 10 · 2 + 6 · 4 + 15 · 1 + 1 = 60.

So far, we proved some general structural theorems about elements of O(V ), and found
some examples of finite rotation groups in O(V ) when V is three dimensional. Next, we
will prove that we have in fact found all finite rotation groups. To do this, we need to
introduce another concept. Suppose that T in O(V ) is a rotation and T 6= 1, with V three
dimensional. Because T is a member of the orthogonal group it preserves length, and thus
permutes the points of the unit ball, i.e., all the vectors of length one. But more is true:
by Euler’s theorem, since T is just a rotation about some axis, T fixes exactly two points
on the unit sphere, namely the two points where the axis of rotation intersects the unit
sphere. We will call these two points the poles of T . The picture is:
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0

pole

pole

1

1

Lemma 5.4. Assume V is three dimensional, and G is a group of rotations of V , i.e., a
subgroup of SO(V ). Let S be the set of all the poles of G. Then G permutes S.

Proof. Let x ∈ S, and R ∈ G. We need to show that Rx ∈ S. Since x ∈ S, there exists
T ∈ G such that Tx = x. We have

(RTR−1)Rx = RTx = Rx.

As RTR−1 ∈ G, we have Rx ∈ S.

This lemma can be used as a basis for obtaining a condition on G which will lead to a
determination of all the finite rotation groups in three dimensions. First, however, we look
at some examples:

Proposition 5.5. We have

G |G| number of poles = |S| Orbits Orders of orbits Orders of stabilizers

Cn3 n 2 2 1, 1 n, n

Hn3 2n 2n+ 2 3 n, n, 2 2, 2, n

T 12 14 3 6, 4, 4 2, 3, 3

W 24 26 3 12, 8, 6 2, 3, 4

I 60 62 3 30, 20, 12 2, 3, 5

Proof. Cn3 : This is the group of rotations generated by a single rotation about an axis
through angle 2π/n. The points on the unit sphere fixed by these rotations are the points
of distance 1 on the axis from the origin, and there are two such points. Hence, |S| = 2.
These points clear like in different orbits, and both are stabilized by every point of Cn3 .
Hn3 : This is the rotational symmetry group of the regular n-gon. The 2n− 1 nontrivial

rotations in this group are divided into two sets. In the first set are the n − 1 non-trivial
rotations with common axis through the center of the n-gon perpendicular to the n-gon;
these all share the same 2 poles. In the second set are the n non-trivial rotations with axes
in the same plane as the n-gon; the vertices and the center points of edges of the n-gon
are the poles of these rotations, and there are 2n such poles. Altogether there are 2n + 2
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poles. The two poles which lie on the axis through the center of the n-gon clearly form
an orbit, and the stabilizer of an element of this orbit has order n. The vertices of n-gon
form another orbit with n elements, and the stabilizer of an element of this orbit has order
2. The midpoints of the sides of the n-gon form another orbit with n elements, and the
stabilizer of an element of this orbit has order 2.
T : The nontrivial rotations in this group have together 7 axes, and each axes has two

poles, so that there are 14 poles. The vertices of T all lie in the same orbit, and they
form an orbit with four elements. The order of a stabilizer of an element in this orbit is
3. Similar comments apply to the midpoints of the faces, which may also be regarded as
poles. Finally, the midpoints of edges also form an orbit with 6 elements, and the stabilizer
of a point in this orbit has 2 elements.
W: The nontrivial rotations in this group have together 13 axes, and each axes has two

poles, so there are 26 poles. The center points of opposing edges are all poles, and form
an orbit. There are 12 such points, and the order of a stabilizer of a such a point is 2. The
vertices of the cube all lie in the same orbit, and they form an orbit with 8 elements; the
order of a stabilizer of an element in this orbit is 3. The center points of opposite faces are
all poles, and form an orbit. There are 6 such points, and the order of a stabilizer of such
a point is 4.
I: The nontrivial rotations in this group have together 31 axes, and each axes has two

poles so there are 62 poles. The remaining analysis is similar to the last two cases.

Theorem 5.6. Let V be three dimensional, and let G be a finite group of rotations of V .
Consider the action of G on its set S of poles, so that there is a partition into orbits:

S = O1 ∪ · · · ∪ Ok.

Let n = |G| and vi = |Oi|. Then

2− 2

n
=

k∑
i=1

1− vi
n
.

Proof. Let U be the set of all pairs (T, x) where T ∈ G is a nonidentity element and x is a
pole of T . We will count U in two different ways. First, based on counting starting from a
nonidentity group element, as each such element has exactly two poles, we have

|U| = 2(n− 1).

Second, we can count by starting from a pole. Fix x ∈ S. The map

{(T, y) ∈ U : y = x} −→ Gx − {1}

defined by T 7→ T is clearly a bijection. Hence,

|U| =
∑
x∈S

(|Gx| − 1).
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We can further compute this sum. For each i, fix an element xi ∈ Oi. Then:

∑
x∈S

(|Gx| − 1) =
k∑
i=1

∑
x∈Oi

(|Gx| − 1)

=
k∑
i=1

∑
x∈Oi

(|Gxi | − 1)

=

k∑
i=1

(|Gxi | − 1)
∑
x∈Oi

1

=
k∑
i=1

(|Gxi | − 1)|Oi|

=

k∑
i=1

|Gxi ||Oi| − |Oi|

=
k∑
i=1

n− vi.

Equating the two ways of counting |U| and dividing by n gives the result.

Theorem 5.7. If G is a finite rotation group, then G is conjugate in O(V ) to Cn3 , n ≥ 1,
Hn3 , n ≥ 2, T , W or I.

Proof. Let G be a finite rotation group. We will first show that |G|, |S|, the number of
orbits and their size must be as on one of the lines of the above table. To prove this, we
first note that we may assume n > 1. This implies:

1 ≤ 2− 2

n
< 2.

Now n/vi is the number of elements in the stabilizer of any element of Oi, and every pole
is stabilized by at least two elements: hence,

n/vi ≥ 2.

This implies

vi/n ≤ 1/2

−vi/n ≥ −1/2

1− vi/n ≥ 1/2,

so that
1

2
≤ 1− vi

n
< 1.
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Since

2− 2

n
=

k∑
i=1

1− vi
n

we conclude that k = 2 or k = 3.
Assume k = 2. Then

2− 2

n
= (1− v1

n
) + (1− v2

n
)

2

n
=

v1

n
+
v2

n
2 = v1 + v2.

We must have v1 = v2 = 1. This gives the Cn3 line of the table.
Assume k = 3. We may assume v1 ≥ v2 ≥ v3. Then

1

2
≤ 1− v1

n
≤ 1− v2

n
≤ 1− v3

n
.

Also, we have

(1− v1

n
) + (1− v2

n
) + (1− v3

n
) = 2− 2

n
< 2.

This means

1− v1

n
<

2

3
v1

n
>

1

3
n

v1
< 3.

The number n/v1 is a positive integer greater than or equal to 2 (it is the order of the
stabilizer of any point in O1) and therefore

n

v1
= 2.

That is,

v1 =
n

2
.

This tells us that

(1− n/2

n
) + (1− v2

n
) + (1− v3

n
) = 2− 2

n
< 2,

1

2
+ (1− v2

n
) + (1− v3

n
) = 2− 2

n
< 2,
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(1− v2

n
) + (1− v3

n
) =

3

2
− 2

n
<

3

2
.

We must have

1− v2

n
<

3

2 · 2
−v2

n
< −1

4
v2

n
>

1

4
n

v2
< 4.

Again, n/v2 is an positive integer which is at least two. This means that

v2 =
n

2
or v2 =

n

3
.

Assume v2 = n/2. Then

(1− n/2

n
) + (1− v3

n
) =

3

2
− 2

n

1− v3

n
= 1− 2

n
v3 = 2.

That is, in this case we have:

v1 =
n

2
, v2 =

n

2
, v3 = 2.

This is the Hn3 line of the table.
Finally, assume v2 = n/3. Then computations show that

1

n/v3
=

1

6
+

2

n
.

If n/v3 = 1 or n/v3 = 2, then v2 = n/3 < v3, a contradiction. If n/v3 = 3 then n = 12,
and v1 = 6, v2 = 4 and v3 = 4. This is the T line of the table. If n/v3 = 4, then n = 24,
v1 = 12, v2 = 8 and v3 = 6. This theW line of the table. If n/v3 = 5, then n = 60, v1 = 30,
v2 = 20 and v3 = 12. This is the I line of the table. Finally, n/v3 ≥ 6 is impossible as it
would imply 2/n < 0.

We have proven that G satisfies the conditions in the last five entries of one of the
rows of the table in the statement of Propostion 5.5; next, we will prove that G is in fact
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conjugate in O(V ) to one of the groups listed in the statement of the theorem we are
proving.

Suppose first that G satisfies the conditions in the last five entries of the first row
of the table. Since the non-identity elements of G have the same two poles, it follows
from Theorem 5.2 that the elements have a common eigenvector x and the restrictions of
the elements of G to P = x⊥ are rotations. By the proof of Theorem 4.4, the group of
restrictions of the elements of G to P is Cn2 . It follows that G is conjugate in O(V ) to Cn3 .

Suppose that G satisfies the conditions in the last five entries of the second row of the
table and that 2n > 2, so that n ≥ 2. We need to prove that G is conjugate in O(V ) to
H3

2n. Let x be a pole that has an orbit of order 2, and let Gx be the stabilizer in G of x.
Then the order of Gx is n. The elements of Gx map the space P = x⊥ into itself, and the
restrictions of the elements of Gx to P = x⊥ are rotations. As in the last paragraph, the
group of restrictions of the elements of Gx to P is Cn2 with respect to P .

Let y be a pole of G not in the orbit of x; we will prove that y ∈ P . We have V = Rx⊕P .
Write y = cx + z for some c ∈ R and z ∈ P . We first claim that z 6= 0. For suppose that
z = 0. Then y = cx, and c = ±1; since x 6= y, c = −1 so that y = −x. This implies that
Gx = Gy. The index of Gx = Gy in G is 2; let T be representative for the non-trivial coset
of Gx = Gy in G. The orbit of x is {x, Tx} and the orbit of y is {y, Ty}. By the table, we
must have n = 2, so that G has order 4, and Gx = Gy has order 2. Since G has order 4,
G is abelian. Let Gx = Gy = {1, R}. We have Rx = x, so that R(Tx) = Tx. This implies
that Tx is a pole of R, and hence that Tx = ±x. Since the orbit {x, Tx} has order 2,
we must have Tx = −x = y, contradicting the assumption that y is not in the orbit of x.
Thus, z 6= 0. Next, let S ∈ Gy be non-trivial. Since Gx has index two in G, Gx is normal
in G, so that S−1GxS = Gx. Let R be a non-trivial element of Gx. Then S−1RSx = x,
or equivalently, R(Sx) = Sx. This implies that Sx is a pole of R; since the two poles of R
are x and −x, we have Sx = x or Sx = −x. Assume first that Sx = x, so that S ∈ Gx; we
will obtain a contradiction. Since S is non-trivial and Sx = x, we must have that S|P is a
non-trivial rotation of P ; in particular, Sz 6= z because z 6= 0. We now have

Sy = cSx+ Sz

y = cx+ Sz

cx+ z = cx+ Sz

z = Sz,

which is a contradiction. Thus, Sx = −x. Calculating again, we have

Sy = cSx+ Sz

y = −cx+ Sz

cx+ z = −cx+ Sz

2cx = −z + Sz.



5 FINITE SUBGROUPS IN THREE DIMENSIONS 25

The vector 2cx lies in Rx while −z + Sz lies in P . Therefore, 2cx = −z + Sz = 0, so that
c = 0 and hence y ∈ P , as claimed.

Now we can complete the argument that G is conjugate to Hn3 inside O(V ). By the
table, Gy has order 2; this means that S has order 2 and is thus a rotation by π degrees
about the line through y. Since the poles ±y of S lie in P by the last paragraph, it is now
evident that G is conjugate to Hn3 inside O(V ).

The remaining cases of the table will be omitted.

We are close to being able to state the classification of finite subgroups of O(V ) when
V is three dimensional. This classification will use the classification of finite rotation
subgroups. To use this classification we will need to describe two ways of constructing
subgroups of O(V ) from rotation subgroups. These two constructions depend on the fact
that

−1 =

−1
−1

−1

 ∈ O(V ), det(−1) = −1.

By −1 we mean multiplication of vectors by −1. This can be viewed as the reflection
through the xy-plane, followed by a rotation through an angle π around the z-axis. The
element −1 has the property that it lies in the center of O(V ).

To describe the first construction, suppose that H is a group of rotations. Consider the
set

H∗ = H ∪ (−1)H.

It is easy to see that this set forms a subgroup of O(V ); moreover, |H∗| = 2|H|.
The second construction will only apply to certain rotation subgroups. Suppose that

K is a group of rotations and K contains a subgroup H of index 2. Consider the set

K]H = H ∪ {−T : T ∈ K −H}.

It can be verified that this is a subgroup of O(V ). We have |K]H| = |K| = 2|H|.

Proposition 5.8. Let G be a subgroup of O(V ), and let H be the subgroup of G of rotations.
Then exactly one of the following holds

i) G is a group of rotations;

ii) G is not a group of rotations and −1 ∈ G, in which case G = H∗;

iii) G is not a group of rotations and −1 /∈ G, in which case G = K]H for some group
of rotations K containing H as a subgroup of index two.

Proof. If G = H, then the first case holds. If −1 ∈ G, then clearly G = H∗. Assume
G 6= H and −1 /∈ G. Let S ∈ G, S /∈ H. Then S2 ∈ H and detS = −1. Set

K = H ∪ (−S)H.
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Computations show that this is a group of rotations. It clearly contains H as a subgroup
of index two because otherwise −S ∈ H, which implies that −1 ∈ G. We have

K]H = H ∪ {−T : T ∈ K −H} = H ∪ {−(−S)R : R ∈ H} = H ∪ SH = G.

This completes the proof.

The following picture of a tetrahedron inside a cube shows that there is an embedding
of T in W as a subgroup of index 2.

Theorem 5.9. Every finite subgroup of O(V ) is conjugate in O(V ) to one of the following
subgroups, and no two distinct subgroups of this list are conjugate:

i) Cn3 , n ≥ 1, Hn3 , n ≥ 2, T , W, I;

ii) Cn3 ∗, n ≥ 1, Hn3 ∗, n ≥ 2, T ∗, W∗, I∗;

iii) C2n
3 ]Cn3 , n ≥ 1, Hn3 ]Cn3 , H2n

3 ]Hn3 , n ≥ 2, W]T .

Proof. One can prove the rotation groups which admit subgroups of index two are as listed
in iii). By Proposition 5.8, it follows that every finite subgroup of O(V ) is conjugate to one
of the groups on the list. One can verify that no two groups on the list are conjugate.
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6 Fundamental regions

Throughout this section V = Rn.
We will now describe the Fricke-Klein construction of a fundamental region or domain

for the action of a finite subgroup of O(V ) on V for n-dimensional V . Let G be a finite
subgroup of O(V ). A subset F ⊂ V is called a fundamental region for G in V if

i) F is open;

ii) F ∩ TF = ∅ for T ∈ G, T 6= 1;

iii) V = ∪T∈GTF .

Sometimes it is also useful to consider the action of G on some subset X of G. Suppose
TX ⊂ X for T ∈ G. Then one can also define the concept of a fundamental region for G
in X. A fundamental region F ⊂ X is a relatively open subset such that F ∩ TF = ∅ for
T ∈ G, T 6= 1, and X = ∪T∈GX ∩ TF .

Lemma 6.1. For n ≥ 1, the vector space V is not the union of a finite number of proper
subspaces.

Proof. We will prove this by induction on n. The proposition clearly holds if n = 1.
Suppose it holds for n− 1. Suppose V = V1 ∪ · · · ∪ Vm, with each Vi a proper subspace of
V . Let W be a subspace of V of dimension n− 1. Then

W = (W ∩ V1) ∪ · · · ∪ (W ∩ Vm).

By the induction hypothesis, one of the subspaces on the right is not proper, i.e., W ∩Vi =
W for some i; this meansW ⊂ Vi. By dimensions, W = Vi. We have proven that V contains
only a finite number of subspaces of dimension n−1. This is false. For example, if v1, . . . , vn
is a basis for V , then for each t ∈ R the spaces spanned by v1, . . . , vn−2, vn−1 + tvn are
distinct.

Lemma 6.2. Let G be a finite subgroup of O(V ) and assume G 6= 1. Then there exists a
point x0 ∈ V such that Tx0 6= x0 for all T ∈ G, T 6= 1.

Proof. For each T ∈ G, T 6= 1 consider the set VT consisting of the fixed points of T acting
on V , i.e., all the points x ∈ V such that Tx = x. For T ∈ G, T 6= 1 the set VT is a proper
subspace of V . The previous lemma shows that the union of the VT for T ∈ G, T 6= 1,
cannot be all of V . Hence, there exists a point x0 not in any of the VT , T ∈ G, T 6= 1.

Now assume G 6= 1 is a finite subgroup of O(V ). We will describe a construction of a
fundamental region based on a choice of a point x0 as in the above lemma. Let

T0 = 1, T1, . . . , TN−1
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be the elements of G. If we apply the elements of G to x0, then we obtain

x0 = T0x0, x1 = T1x0, x2 = T2x0, . . . , xN−1 = TN−1x0.

These points are distinct because if Tix0 = Tjx0 for some i, j ∈ {0, 1, . . . , N − 1}, then
T−1
j Tix0 = x0 with T−1

j Ti = Tk for some k ∈ {1, . . . , N − 1}; this contradicts the definition
of x0. These N points all lie on the sphere of radius ‖x0‖. Fix some i with 1 ≤ i ≤ N − 1.
We consider the vector x0 − xi. As in Section 2, this vector defines a hyperplane

Pi = (x0 − xi)⊥

and two half-spaces:

{x ∈ V : (x, x0 − xi) > 0} and {x ∈ V : (x, x0 − xi) < 0}.

There are some other characterizations of Pi and these two half-spaces. Namely,

Pi = {x ∈ V : d(x, x0) = d(x, xi)}.

To see this, we note that

x ∈ Pi ⇔ (x, x0 − xi) = 0

⇔ (x, x0) = (x, xi)

⇔ (x, x0) = (x, Tix0)

⇔ −(x, x0)− (x0, x) = −(x, Tix0)− (Tix0, x)

⇔ (x, x)− (x, x0)− (x0, x) + (x0, x0) = (x, x)− (x, Tix0)− (Tix0, x) + (Tix0, Tix0)

⇔ (x− x0, x− x0) = (x− Tix0, x− Tix0)

⇔ d(x, x0) = d(x, xi).

Similarly,
{x ∈ V : (x, x0 − xi) > 0} = {x ∈ V : d(x, x0) < d(x, xi)}

and
{x ∈ V : (x, x0 − xi) < 0} = {x ∈ V : d(x, x0) > d(x, xi)}.

We will be particularly interested in the half-space

Li = {x ∈ V : d(x, x0) < d(x, xi)}.

We set
F = ∩N−1

i=1 Li.

The set F is a convex cone extending to infinity. As an example, consider the case in the
plane when N = 3, with say
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x0

x1

x2

Then we have:

x0

x1

x2

L1

x0

x1

x2

L2

so that

x0

x1

x2

F
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Theorem 6.3. The set F is a fundamental region for G in V .

Proof. We need to show that the three conditions are satisfied. First of all, it is clear that
F is open because it is the intersection of a finite number of open sets.

Second, we need to show that for all 1 ≤ i ≤ N − 1 we have F ∩ TiF = ∅. To prove
this, we compute TiF . We have

TiF = Ti ∩N−1
j=1 {x ∈ V : d(x, x0) < d(x, xj)}

= Ti{x ∈ V : d(x, x0) < d(x, xj), 1 ≤ j ≤ N − 1}

= {y ∈ V :
there exists x ∈ V such that y = Tix and
d(x, x0) < d(x, xj) for 1 ≤ j ≤ N − 1

}

= {y ∈ V :
there exists x ∈ V such that y = Tix and
d(Tix, Tix0) < d(Tix, TiTjx0) for 1 ≤ j ≤ N − 1

}

= {y ∈ V : d(y, xi) < d(y, Tkx0), 0 ≤ k ≤ N − 1, k 6= i}
TiF = {y ∈ V : d(y, xi) < d(y, xk), 0 ≤ k ≤ N − 1, k 6= i}.

If now y ∈ F ∩ TiF , then as y ∈ F we have d(y, x0) < d(y, xi), and as y ∈ TiF , we have
d(y, xi) < d(y, x0): this is a contradiction.

Finally, we need to show that the union of the closures of the TiF is all of V . It is not
hard to show that 1 ≤ i ≤ N − 1,

TiF = {y ∈ V : d(y, xi) ≤ d(y, xk), 0 ≤ k ≤ N − 1}.

Let x ∈ V . Choose i with 0 ≤ i ≤ N − 1 such that d(x, xi) is minimal. Then d(x, xi) ≤
d(x, xj) for all 0 ≤ j ≤ N − 1. By our characterization of TiF we get x ∈ TiF .
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7 Roots

We now let V be of arbitary finite dimension. Our overall goal is to classify the finite
subgroups of O(V ) generated by reflections, and we now introduce a geometric concept,
called roots or the root system, which will be useful in this classification.

First we make a natural reduction. Let G be any subgroup of O(V ). Let V0 be the
subset of all vectors x in V such that Tx = x for all T ∈ G. The set V0 is clearly a subspace
of V , and we have a decomposition

V = V0 ⊕ V ⊥0 .

Since the elements of G preserve V0 (they are the identity on V0, the elements of G send
V ⊥0 into itself. We can thus regard every element T of G to be of the form[

1 0
0 T |V ⊥0

]
,

and the map
G ↪→ O(V ⊥0 ), T 7→ T |V ⊥0

is an injective homomorphism.

Proposition 7.1. Let the notation be as above. If G is generated by reflections, then the
image of G in O(V0) is also generated by reflections.

Proof. It will suffice to show that if S ∈ G is a reflection through P = r⊥, then the image
of S is also a reflection. Evidently, V0 ⊂ P. Hence, P⊥ ⊂ V ⊥0 , that is, r ∈ V ⊥0 . Since

Sx = x− 2 (x,r)
(r,r) r for x ∈ V , and since r ∈ V ⊥0 , S|V ⊥0 is also a reflection.

The last proposition shows that for the purposes of classifying subgroups of O(V )
generated by reflections, it suffices to consider those subgroups such that V0 = 0. We shall
say that a subgroup G ⊂ O(V ) is effective if V0 = 0, i.e., if the elements of G do not
have any common fixed points. A finite subgroup G of O(V ) which is finite, effective and
generated by reflections will be called a Coxeter group. Our goal is to classify Coexeter
groups. Unless we say otherwise, in this section G will be a fixed Coxeter group.

In consider rotations in three space we found that poles were a very useful concept. An
analogous concept exists for reflections. Namely, suppose S ∈ G is a reflection through the
hyperplane P = r⊥. We may assume that r has length one. We will call the vectors r and
−r the roots of S; the roots of G are the roots of the reflections in G.

Proposition 7.2. If r is a root of G corresponding to the reflection S, and T ∈ G, then
Tr is also a root of G. In fact, STr = TSrT

−1.
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Proof. It will suffice to prove STr = TSrT
−1. We have

TSrT
−1x = T (T−1 − 2

(T−1x, r)

r, r)
r)

= x− 2
(T−1x, r)

(r, r)
Tr

= x− 2
(T−1x, T−1Tr)

(Tr, Tr)
Tr

= x− 2
(x, Tr)

(Tr, Tr)
Tr

= STr(x).

This proves the proposition.

Now fix a set of generators consisting of reflections for G, and let ∆ be the set of
consisting of the union of the orbits of these roots under the action of G. Since ∆ is the
union of orbits, G acts on ∆. We call ∆ a root system for G. In fact, it will turn out later
that ∆ is the set of all the roots of G, so that there is only one root system associated to
G, but for now we use this definition. Our intermediate goal is to prove some basic results
about ∆.

Proposition 7.3. The set ∆ contains a spanning set, and hence a basis for V .

Proof. Let
∆ = {x1, . . . , xk}.

Consider the subspace W = ∩ki=1x
⊥
i . As G is generated by reflections along the roots

x1, . . . , xk, and these reflections act trivially on the hyperplanes x⊥i , it follows that G acts
trivially on W . Since G is effective, W = 0. This means

V = W⊥ = (∩ki=1x
⊥
i )⊥ = x⊥1

⊥ + · · ·+ x⊥k
⊥ = Rx1 + · · ·+Rxk.

(Here we have used (U1∩U2)⊥ = U⊥1 +U⊥2 which is equivalent to (W1 +W2)⊥ = W⊥1 ∩W⊥2 ;
this follows because x ∈ (W1 + W2)⊥ ⇐⇒ (x,W1 + W2) = 0 ⇐⇒ (x,W1) = (x,W2) =
0 ⇐⇒ x ∈W⊥1 ∩W⊥2 . ) Since {x1, . . . , xk} contains a spanning set, it contains a basis.

Next, we geometrically partition ∆ into positive and negative elements. This concept
will depend on the choice of another auxiliary vector. Fix t ∈ V such that (t, r) 6= 0
for all r ∈ ∆. (Such a vector exists because V is not the union of the finitely many
proper subspaces consisting of the kernels of x 7→ (x, r) for r ∈ ∆). The root system ∆ is
partitioned into two sets:

∆+ = {r ∈ ∆ : (t, r) > 0}, ∆− = {r ∈ ∆ : (t, r) < 0}.
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Geometrically what we are doing is taking the hyperplane t⊥; the elements in ∆+ lie on
the same side of the hyperplane as t and form an acute angle with t; the elements in ∆−

lie on the side of the hyperplane not containing t and form an obtuse angle with t. Note
that the positive roots ∆+ and the negative roots ∆− have the same number of elements;
in fact, there is a bijection between these two sets given by r 7→ −r.

We single out a subset of the positive roots that will contain a great deal of information
about G. Choose a subset Π of the positive roots ∆+ such that every element of ∆+ can
be written as a sum of elements from Π with nonnegative coefficients, and the number of
elements of Π is minimal with respect to this property; such a subset Π is called a base
for ∆. Such a Π exists, as ∆+ is finite; after developing some ideas we will show that Π is
unique. Let

Π = {r1, . . . , rm}.

We will say that x ∈ V is positive if x can be written as a linear combination of the
elements from the base Π with nonnegative coefficients; we say that x ∈ V is negative if it
can be written as a linear combination of the elements from Π with nonpositive coefficients.
Clearly, every element of ∆+ is indeed positive and every element of ∆− is negative. If x
is positive then we have (x, t) ≥ 0; if x is negative, we get (x, t) ≤ 0.

Lemma 7.4. Let ri, rj ∈ Π with i 6= j. Let λi and λj be positive real numbers. Then
x = λiri − λjrj is neither positive nor negative.

Proof. Suppose x is positive. Then we can write

λiri − λjrj = µ1r1 + · · ·+ µmrm

with µ1 ≥ 0, . . . , µm ≥ 0. Suppose λi ≤ µi. Then

0 = (µi − λi)ri + (µj + λj)rj +
∑

k=1,...,m, k 6=i,j
µkrk

Since all the coefficients of this sum are nonnegative, if we take the inner product with t
we get

0 =
(
t, (µi − λi)ri + (µj + λj)rj +

∑
k=1,...,m,k 6=i,j

µkrk

)
≥ λj(t, rj) > 0.

This is a contradiction. Suppose λi > µi. Then

(λi − µi)ri = (µj + λj)rj +
∑

k=1,...,m,k 6=i,j
µkrk.

This contradicts the minimality of Π. Thus, x is not positive. If x were negative, then −x
would be positive; a similar argument to the one above would give a contradiction.
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Using this lemma, we can show that ri and rj form an obtuse angle:

Lemma 7.5. Let ri, rj ∈ Π, with i 6= j. Then (ri, rj) ≤ 0.

Proof. To prove this we use the reflection Si ∈ G along ri (Si exists by definition). We
know that Sirj ∈ ∆ (by the definition of ∆). Hence, Sirj is either positive or negative.
Now

Sirj = rj − 2
(rj , ri)

(ri, ri)
ri.

One of the coefficients in the linear combination on the right hand side of this equation is
positive, namely the coefficient of rj which is 1. By the last lemma, the second coefficient
must be nonnegative. This implies (rj , ri) ≤ 0 (and Sirj is positive).

The importance of obtuseness is revealed in the next lemma:

Lemma 7.6. Let x1, . . . , xm ∈ V , and suppose these vectors all lie on the same side of a
hyperplane, i.e., there exists an x ∈ V such that (xi, x) > 0 for 1 ≤ i ≤ m. If xi and xj
form an obtuse angle for i 6= j then {x1, . . . , xm} is linearly independent.

Proof. Suppose there is a nontrivial linear relation between the xi. Then there exists an
equation

λ1x1 + · · ·+ λkxk = µk+1xk+1 + · · ·+ µmxm

with λ1, . . . , λk ≥ 0, µm+1, . . . , µm ≥ 0 and say λ1 > 0. Computing the square of the norm
of this gives:

0 ≤ ‖λ1x1 + · · ·+ λkxk‖2 = (λ1x1 + · · ·+ λkxk, λ1x1 + · · ·+ λkxk)

= (λ1x1 + · · ·+ λkxk, µk+1xk+1 + · · ·+ µmxm)

=
∑

λiµj(xi, xj) ≤ 0.

This implies
λ1x1 + · · ·+ λkxk = 0.

This used the obtuse of the angles. Now we use that all the vectors lie on one side of a
hyperplane. We have

0 = (λ1x1 + · · ·+ λkxk, x) = λ1(x1, x) + · · ·+ λk(xk, x) > 0.

This is a contradiction.

Proposition 7.7. The set Π is a basis for V . In particular, it contains n elements. There
is only one base for ∆.
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Proof. The previous lemma shows that Π is linearly independent. We showed before ∆
contains a spanning set; since every element of ∆ can be written a linear combination of
elements from Π, it follows that Π is a spanning set. Thus, Π is a basis for V .

Next, suppose Π′ is another base for ∆. Then Π′ is also a basis for V . Let A be the
change of basis matrix from Π to Π′ and let B be the change of basis matrix from Π′ to Π.
We have AB = 1. Also, by the definition of a base, the entries of A and B are nonnegative
real numbers. Let a1, . . . , an be the rows of A and b1, . . . , bn the columns of B. Since
AB = 1, we have

(a1, b2) = . . . (a1, bn) = 0.

It follows that a1 has exactly one nonzero (which is nonnegative) entry (it must have at
least one nonzero entry, as the rows of A are linearly independent. Suppose it has at least
two nonzero entries. Then by these equations, the corresponding entries of b2, . . . , bn are
zero; recall that A and B have nonnegative entries. This implies that b2, . . . , bn are not
linearly independent, a contraction). Similar arguments show that each row has exactly
one nonzero entry, which is positive. Recalling the meaning of A, it follows that each
element of Π′ is a positive multiple of an element of Π. Since roots have length one, it
follows that this positive scalar is one. This means Π′ = Π.

We call the elements of Π = {r1, . . . , rn} the fundamental roots or simple roots. We
call the reflections S1, . . . , Sn ∈ G along the roots r1, . . . , rn the fundamental reflections.
Our next goal is to prove that the fundamental reflections generate G.

First, however, we consider an example. Consider G = H3
2 ⊂ O(R2). This the group of

symmetries of an equilateral triangle. We will orient our triangle as follows:
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`1

`2`3

The group G is generated by R, the rotation by 2π/3, and the reflection S through the
vertical dotted line `1. Then the group is

G = {1, R,R2, S, SR, SR2}.

The reflections in G are S, SR and SR2. Here, SR is the reflection through the line `2 and
SR2 is the reflection through the line `3. The group G is generated by S and SR, and we
take {S, SR} as our generator set. Let r1 and −r1 be the roots of S, let r2 and −r2 be the
roots of SR, and let r3 and −r3 be the roots of SR2. We have r3 = r1 + r2. Referring to
the diagram below, we have:

1 · r1 = r1

Rr1 = r2

R2r1 = −r3,
Sr1 = −r1,

SRr1 = r3,
SR2r1 = −r2,

1 · r2 = r2,
Rr2 = −r3,
R2r2 = r1,
Sr2 = r3,

SRr2 = −r2,
SR2r2 = −r1.

It follows that
∆ = {r1, r2, r3 = r1 + r2,−r1,−r2,−r3 = −r1 − r2}.
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t

r1 = (1, 0)−r1 = (−1, 0)

r3 = r1 + r2 = (1/2,
√

3/2)

−r3 = −r1 − r2 = (−1/2,−
√

3/2)

r2 = (−1/2,
√

3/2)

−r2 = (1/2,−
√

3/2)

`1

`2`3

Let t be as in the above diagram. Then we get:

∆+ = ∆+
t = {r1, r2, r1 + r2}, ∆− = ∆−t = {−r1,−r2,−(r1 + r2)}

and
Π = {r1, r2}.

Proposition 7.8. Let ri ∈ Π = {r1, . . . , rn}, and let Si ∈ G be the reflection along ri. If
r ∈ ∆+ and r 6= ri, then Sir ∈ ∆+.

Proof. Since r is a root, we know that Sir is another root. That is, Sir ∈ ∆. Thus, Sir is
positive or negative. Write

r = λ1r1 + · · ·+ λnrn.

Since r is positive, λ1 ≥ 0, . . . , λn ≥ 0 with at least one of these nonzero. We have

Sir = r − 2(r, ri)ri

= (λ1r1 + · · ·+ λnrn)− 2(λ1r1 + · · ·+ λnrn, ri)ri

=
(
λi − 2(λ1r1 + · · ·+ λnrn, ri)

)
ri +

n∑
j=1,j 6=i

λjrj
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If some λj with j 6= i is nonzero, then Sir is positive. Assume λj = 0 for j 6= i. Then

Sir =
(
λi − 2(λ1r1 + · · ·+ λnrn, ri)

)
ri +

n∑
j=1,j 6=i

λjrj

=
(
λi − 2(λiri, ri)

)
ri

= −λiri
= −r.

Since Sir = −r, r is a multiple of ri. Since r and ri are positive and have length 1, it
follows that r = ri. But we assumed r 6= ri; this contradiction completes the proof.

Proposition 7.9. Let r ∈ ∆+. Then there exists a product T of fundamental reflections
such that Tr ∈ Π.

Proof. If r ∈ Π we take T = 1. Assume r /∈ Π. Consider the set Π ∪ {r}. This set is
not linearly independent. On the other hand, all of these vectors lie on one side of the
hyperplane t⊥. By Lemma 7.5 and Lemma 7.6, there exists an i such that (r, ri) > 0: one
of simple roots makes an acute angle with r. Let’s apply the fundamental reflection Si to
r. By the Proposition 7.8 (note that r /∈ Π), we know that

Sir ∈ ∆+.

And this vector also makes a less acute angle with t than does r:

(Sir, t) = (r − 2(r, ri)ri, t) = (r, t)− 2(r, ri)(ri, t) < (r, t).

If Sir is in Π we can take T = Si. Suppose Sir /∈ Π. Then we can repeat what we just did
and find a j such that SjSir ∈ ∆+ and

(SjSir, t) < (Si, t) < (r, t).

But we cannot continue this process forever: if we could, then r, Sir, SjSir, . . . would be
distinct elements of ∆+, and ∆+ is finite (here we use the finite generation of G). Thus,
the process terminates at some point, which proves the proposition.

Theorem 7.10. The fundamental reflections S1, . . . , Sn generate G.

Proof. By definition, G is generated by the Sr for r ∈ ∆. Also, Sr = S−r for r ∈ ∆. Hence,
it suffices to prove that the Sr for r ∈ ∆+ can be written as products of fundamental
reflections. Let r ∈ ∆+. By the last proposition, there exists a product T of fundamental
reflections such that Tr ∈ Π. Write Tr = ri. We have

Sr = STri = TSriT
−1.

This proves the theorem.
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Thus, we have proven that for every Coxeter group there exists a special basis Π for V
consisting of roots which form obtuse angles with each other, and the reflections associated
with roots generate the group. Our next goal is to determine a very natural fundamental
domain for G which also involves Π. A consequence of this will be that the root system,
which was initially defined to be smaller than the set of all roots, is in fact equal to the set
of all roots.

Proposition 7.11. If T ∈ G and TΠ = Π, then T = 1.

Proof. Suppose T 6= 1; we will obtain a contradiction. Write

T = Si1Si2 . . . Sik ;

we may assume that T cannot be written as a product of a smaller number of fundamental
reflections. Now since TΠ = Π we have

Trik = Si1 . . . Sikrik = −Si1 . . . Sik−1
rik ∈ Π.

This implies that
Si1 . . . Sik−1

rik ∈ ∆−.

Consider the sequence of roots:

a0 = Si1 . . . Sik−1
rik ,

a1 = Si2 . . . Sik−1
rik ,

a2 = Si3 . . . Sik−1
rik ,

...

ak−1 = rik .

The first root, a0, is in ∆−, while the last root, ak−1 is in ∆+. Let aj be the first of the
roots to be positive. We have

aj = Sij+1 . . . Sik−1
rik = SijSijSij+1 . . . Sik−1

rik = Sijaj−1.

and therefore
aj−1 = Sijaj .

The root aj is positive, while aj−1 is negative. By Proposition 7.8 we must have

rij = aj .

We now have the equation
rij = Sij+1 . . . Sik−1

rik .
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By Proposition 7.2 this gives

Sij = Srij = Sij+1 . . . Sik−1
Sik(Sij+1 . . . Sik−1

)−1.

This is equivalent to
SijSij+1 . . . Sik−1

= Sij+1 . . . Sik−1
Sik .

This gives

T = Si1 . . . Sik
= Si1 . . . Sij−1SijSij+1 . . . Sik−1

Sik
= Si1 . . . Sj−1Sij+1 . . . Sik−1

SkiSki
= Si1 . . . Sj−1Sij+1 . . . Sik−1

.

This contradicts the minimality of k.

So far, we have suppressed the dependence of ∆+ and ∆− on t, but now recall it and
use it as a tool.

Proposition 7.12. If T ∈ G, then T (∆+
t ) = ∆+

T (t) and T (Πt) = ΠT (t).

Proof. We have

T (∆+
t ) = T{r ∈ ∆ : (t, r) > 0}

= {x ∈ ∆ : x = Tr, r ∈ ∆, (t, r) > 0}
= {x ∈ ∆ : (t, T−1x) > 0}
= {x ∈ ∆ : (Tt, x) > 0}
= ∆+

T (t).

To see that T (Πt) = ΠT (t) we note first that T (Πt) ⊂ T (∆+
t ) = ∆+

T (t). Also, it is evident

that every element of T (∆+
t ) = ∆+

T (t) can be written as a linear combination of elements

from T (Πt) and that T (Πt) has n elements. By Proposition 7.7 it follows that T (Πt) is a
base for the choice T (t); by the uniqueness of base, T (Πt) = ΠT (t).

Proposition 7.13. If T ∈ G and T (∆+) = ∆+, then T = 1.

Proof. To prove this we will show that TΠ = Π and apply Proposition 7.11. We have

∆+ = T∆+ = T∆+
t = ∆+

T (t).

By the uniqueness of base, Π = ΠT (t). On the other hand, we just proved TΠ = ΠT (t).
Putting these together, we get TΠ = Π.
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Next, we describe the mentioned fundamental region for G. This is simply described as
all the vectors in V which make a strictly acute angle with every fundamental root. That
is, we will show that

F = {x ∈ V : (x, r1) > 0, . . . , (x, rn) > 0}

is a fundamental region for G. Before proving that this is a fundamental region we will
make a few observations about this set. First, F is the intersection of the open half-spaces
determined by the fundamental roots:

F = ∩ni=1{x ∈ V : (x, ri) > 0}.

Let
Pi = r⊥i

for i = 1, . . . , n; these are the hyperplanes through the which the fundamental reflections
reflect. The closure F̄ is:

F̄ = {x ∈ V : (x, r1) ≥ 0, . . . , (x, rn) ≥ 0} = ∩ni=1{x ∈ V : (x, ri) ≥ 0}.

The boundary of F is:

boundary of F = (F̄ ∩ P1) ∪ · · · ∪ (F̄ ∩ Pn).

The sets (F̄ ∩Pi) are called the walls of F . The fundamental reflection Si is the reflection
through the i-th wall of F .

Going back to our example,
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t

r1 = (1, 0)−r1 = (−1, 0)

r3 = r1 + r2 = (1/2,
√

3/2)

−r3 = −r1 − r2 = (−1/2,−
√

3/2)

r2 = (−1/2,
√

3/2)

−r2 = (1/2,−
√

3/2)

`1

`2`3

wall F̄ ∩ P1

wall F̄ ∩ P2

Theorem 7.14. The set F is a fundamental region for G.

Proof. We need to prove three statements: F is open; F ∩ TF = ∅ for T ∈ G and T 6= 1;
and V = ∪T∈GT F̄ = ∪T∈GTF .

First, it is clear that F is open.
Next, suppose x ∈ F ∩ TF ; we need to prove T = 1. Since x ∈ F , we certainly

have (x, r1) > 0, . . . , (x, rn) > 0. This implies that (x, r) > 0 for all r ∈ ∆+. Hence,
∆+ = ∆+

t ⊂ ∆+
x ; by cardinalities, we have ∆+

t = ∆+
x (these set have the same cardinalities

because their orders are half of the cardinality of ∆). By Proposition 7.7, Πt = Πx. Since
x ∈ TF , we also have T−1x ∈ F . This also gives ΠT−1x = Πt. Therefore,

Πt = ΠT−1x = T−1Πx = T−1Πt.

By Proposition 7.13, T = 1.
Finally, let y ∈ V . We need to prove that there exists T ∈ G such that (Tx, r1) ≥

0, . . . , (Tx, rn) ≥ 0. To do this, let

x0 =
1

2

∑
r∈∆+

r.

Then for 1 ≤ i ≤ n we have, by Proposition 7.8,

Six0 = Si(
1

2
ri +

1

2

∑
r∈∆+,r 6=ri

r)
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= −1

2
ri +

1

2

∑
r∈∆+,r 6=ri

r

= x0 − ri.

What has this to do with our task? Let T ∈ G be such that (Ty, x0) is maximal. By this
maximality and the above equation,

(Ty, x0) ≥ (SiTy, x0) = (Ty, Six0) = (Ty, x0 − ri) = (Ty, x0)− (Ty, ri).

That is,
(Ty, ri) ≥ 0,

as desired.

Theorem 7.15. Every reflection in G is conjugate to a fundamental reflection. Every root
is in the root system.

Proof. We will show that if r is a root for G, then r = ±Tri for some T ∈ G and i with
1 ≤ i ≤ n. This will prove the theorem because then Sr = STri = TSiT

−1 by Proposition
7.2, proving that every reflection in G is conjugate to a fundamental reflection; and r ∈ ∆
by the definition of ∆.

To prove our statement, let P = r⊥. We claim first that P ∩TF = ∅ for all T ∈ G. To
see this, suppose P ∩ TF 6= ∅ for some T ∈ G. Let x ∈ P ∩ TF . Then, of course, x ∈ TF .
Also, we have x = Srx ∈ SrTF . This means that TF ∩ SrTF 6= ∅. But this contradicts
the fact that TF is a fundamental region for G (note that Sr 6= 1).

So P ∩
⋃
T∈G TF = ∅. In addition, there is a decomposition:

F̄ = F ∪ (F̄ ∩ P1) ∪ · · · ∪ (F̄ ∩ Pn).

This implies that

V =
⋃
T∈G

TF ∪
⋃
T∈G

T (F̄ ∩ P1) ∪ · · · ∪
⋃
T∈G

T (F̄ ∩ Pn).

This is the same as

V =
⋃
T∈G

TF ∪ (
⋃
T∈G

T F̄ ∩ TP1) ∪ · · · ∪ (
⋃
T∈G

T F̄ ∩ TPn).

Since P ∩ ∪T∈GTF = ∅ we conclude that

P ⊂
⋃

T∈G,1≤i≤n
TPi.

This implies

P =
⋃

T∈G,1≤i≤n
P ∩ TPi.
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Now consider the P ∩TPi. These are subspaces of P . One of these subspaces is not proper,
by Lemma 6.1. Hence, for some T and i, P = P ∩ TPi. This means that P ⊂ TPi. By
dimensions, P = TPi. Taking orthogonal complements, we get r = ±Tri.

There is another characterization of the fundamental region which we want to discuss.

Proposition 7.16. Let Π∗ = {s1, . . . , sn} be the basis for V dual to Π = {r1, . . . , rn}, i.e.,
the basis such that (si, rj) = δij for 1 ≤ i, j ≤ n. Then

F = {x ∈ V : x = λ1s1 + · · ·+ λnsn, λ1 > 0, . . . λn > 0}.

Proof. To see this, let x ∈ V and write x = λ1s1 + · · ·+ λnsn. Then

(x, ri) = λi(si, ri) = λi

for 1 ≤ i ≤ n.

There is some terminology associated with this point of view. The convex hull of
s1, . . . , sn is the smallest convex subset of V containing these vectors. It is

co(Π∗) = {x ∈ V : x = λ1s1 + · · ·+ λnsn, λ1 ≥ 0, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}.

We have
F̄ = R≥0 · co(Π∗).

The set co(Π∗) is also called the simplex spanned by s1, . . . , sn, and R≥0 · co(Π∗) is called
the simplicial cone spanned by s1, . . . , sn.

We can say a bit more about s1, . . . , sn: they form acute angles.

Theorem 7.17. Let {r1, . . . , rn} be a basis for V and assume (ri, rj) ≤ 0 for i 6= j. Let
{s1, . . . , sn} be the dual basis. Then (si, sj) ≥ 0 for all i, j.

Proof. Let A be the change of basis matrix from the basis {s1, . . . , sn} to {r1, . . . , rn}, and
let B be the change of basis matrix from the basis {r1, . . . , rn} to {s1, . . . , sn}. Of course,
we have

AB = 1.

What are the entries of A and B? Let A = (Aij). By definition,

rj =
n∑
l=1

Aljsl.

Then

(ri, rj) =
n∑
l=1

Alj(ri, sl) = Aij .
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We thus find that

A = (ri, rj)1≤i,j≤n, B = A−1 = (si, sj)1≤i,j≤n.

We need to show that the entries of B are nonnegative. To do this, we need to gather some
information about A. First of all, it is clear that A is symmetric. It is a fact from linear
algebra that every symmetric real matrix can be diagonalized. So we can find a matrix U
such that

UAU−1 =

λ1

. . .

λn

 .
Let λ be an eigenvalue of A with eigenvector x. Write

x = d1r1 + · · ·+ dnrn.

Since the matrix A is also the matrix of the positive definite symmetric bilinear form (·, ·)
on V in the ordered basis r1, . . . , rn we have

(x, x) =
[
d1 · · · dn

]
A

d1
...
dn


= λ

[
d1 · · · dn

] d1
...
dn


(x, x) = λ

n∑
i=1

d2
i .

As (x, x) > 0 and
∑n

i=1 d
2
i , it follows that λ > 0. Also, because (r1, r1) = · · · = (rn, rn) = 1,

the trace of A is n and
λ1 + · · ·+ λn = 1.

From this we conclude that 0 < λ1, . . . , λn < 1. Now introduce the matrix

C = I − (1/n)A.

The entries of C are nonnegative because the entries of A are nonpositive. We have

UCU−1 = 1− (1/n)UAU−1 =

1− λ1/n
. . .

1− λn/n

 .
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Thus, C is also diagonalizable with eigenvalues that are between 0 and 1. We get

A = n(1− C)

A−1 = (1/n)(1− C)−1

B = (1/n)(I + C + C2 + . . . ).

Here, the infinite sum 1 + C + C2 + · · · does converge because C has eigenvalues between
0 and 1. Since all the entries of C are nonnegative, by the above equality all the entries of
B are nonnegative.

Before consider another example we make a comment about what we have proven and
other possible choices for the lengths of roots. We started with a Coxeter group G. If ∆ is
the set of all the roots of G, then we introduced the concept of positive roots ∆+ (which
depends on a choice t), we proved that ∆+ has a base Π, that the cardinality of Π is n,
that G is generated by the reflections corresponding to the fundamental roots, and there
is a natural fundamental region. Suppose that instead of initially choosing the set of roots
to all have length one we chose other lengths for the roots. Then the definition of ∆ would
change, the set of positive roots would be multiplies of the old positive roots, the set of
fundamental roots would be multiples of the old fundamental roots, the set of fundamental
reflections would be the same, and so would the fundamental region. So changing the
lengths of the roots would have no significant effect on the results we proved; and it will
be convenient to make other choices for lengths, as in the following example.

We consider H4
2 ⊂ O(R2). These are the symmetries of the square:

`1 `2

`3

`4

Let R be rotation in the counterclockwise direction by 2π/4 = π/2 degrees, and let S be
the reflection through the line `1. The group is

H4
2 = {1, R,R2, R3, S, SR, SR2, SR3}.
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The reflections in this group are S, SR, SR2 and SR3. The reflection SR is the reflection
through the line `2, the reflection SR2 is the reflection through the line `3, and SR3 is the
refection through the line `4. The group G is generated by S and SR. Let α1 and α2 be
the following roots for S and SR, and let t be as in the following diagram:

`1 `2

`3

`4

t

α1

α2

The roots are then

S : ± α1,

SR : ± α2,

SR2 : ± (α1 + α2),

SR3 : ± (2α1 + α2),

so that

∆ = {α1, α2, α1 + α2, 2α1 + α2,−α1,−α2,−α1 − α2,−2α1 − α2},
∆+ = {α1, α2, α1 + α2, 2α1 + α2},

∆ = {−α1,−α2,−α1 − α2,−2α1 − α2},
Π = {α1, α2},

as in the following diagram:
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F`1 `2

`3

`4

t

α1

α2
α1 + α2

2α1 + α2

−α1

−α2−(α1 + α2)
−(2α1 + α2)
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8 Classification of Coxeter groups

In this section G is Coxeter group with root system ∆ and Π = {r1, . . . , rn} is a base. We
recall that a Coxeter is a finite subgroup of O(V ) which is generated by reflections, and
which has the further property of being effective, i.e., there is no nonzero vector fixed by
all the elements of G. If a group is not effective then it can be embedded into O(V ′) for
V ′ of dimension n− 1.

We begin our classification of Coxeter groups by making a further reduction. We say
that a Coxeter group is irreducible if Π cannot be written as the union Π1 ∪ Π2 of two
nonempty subsets Π1 and Π2 with all the vectors in Π1 orthogonal to all the vectors in Π2.

Lemma 8.1. If Π = Π1 ∪Π2 with Π1 6= ∅, Π2 6= ∅ and Π1 ⊥ Π2, then G = G1 ×G2, for
some Coxeter groups G1 6= 1 and G2 6= 1.

Proof. Let V1 be the subspace of V spanned by Π1 and let V2 be the subspace of V spanned
by Π2. Then we have an orthogonal decomposition:

V = V1 ⊥ V2.

Suppose that Si is a reflection corresponding to a simple root ri ∈ Π1. Let us consider the
action of Si on V1 and V2. To understand the action of Si on V2 is suffices to understand
the action of Si on the elements in Π2. Let rj ∈ Π2. By assumption, (ri, rj) = 0. Using
the formula for a reflection, we have

Sirj = rj − 2
(rj , ri)

(ri, ri)
ri = rj .

It follows that Si is the identity on V2. In particular, Si maps V2 to itself. This implies that
Si maps V1 = V ⊥2 to itself. Similarly, if Sj is a reflection corresponding to a simple root
rj ∈ Π2, then Sj is the identity on V1 and maps V2 to itself. Therefore, as the elements of
G are generated by the simple reflections, every element of G maps V1 to itself and V2 to
itself; its matrix has the form: [

g|V1 0
0 g|V2

]
.

We define a map
i : G→ O(V1)×O(V2)

by
i(g) = (g|V1 , g|V2).

This map is clearly an injective homomorphism. Also, let

G1 = {g|V1 : g ∈ G}, G2 = {g|V2 : g ∈ G}.
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We claim that
i(G) = G1 ×G2.

It is clear that i(G) ⊂ G1×G2. To see that G1×G2 ⊂ G, it will suffice to show G1×1 ⊂ i(G)
and 1×G2 ⊂ i(G). Consider an element g1 of G1. It is obtained by restricting an element
of G to V1. As the simple reflections generate G, g is of the form

g1 = S1|V1 · · · St|V1

where S1, . . . , St are simple reflections corresponding to the elements of Π. Since all the
simple reflections corresponding to the elements of V2 restrict to the identity on V1, we
may assume that S1, . . . , St correspond to elements of Π1. Since the simple reflections
corresponding to elements of Π1 restrict to the identity on V2, we get

i(S1 · · · St) = (g1, 1).

It follows that G1 × 1 ⊂ i(G). Similarly, 1×G2 ⊂ i(G), and we get G1 ×G2 = i(G).
Finally, we need to see that G1 and G2 are Coxeter groups. First of all, if Si is the

simple reflection corresponding to an element ri ∈ Π1, then restriction of Si to V1 is also a
reflection: this follows from the formula for Si, which also holds on V1 – note that ri ∈ V1.
Hence, G1 is generated by reflections; similarly, G2 is generated by reflections. If all the
elements of G1 fixed a vector v1 in V1, then all the elements of G would fix the vector v1⊕0
in V = V1 ⊕ V2; hence, v1 ⊕ 0 = 0, and v1 = 0. Therefore, G1 is effective; similarly, G2 is
effective. This completes the proof.

Because of the lemma we will often assume that G is irreducible.
Next, we move on the classification of irreducible Coxeter groups. The following lemma

will be useful in proving a fundamental result about the angles made by simple roots.

Lemma 8.2. Let H be a dihedral group in O(R2) of order 2m. Suppose that t has been
chosen, and {r1, r2} is the corresponding base, and {s1, s2} is the basis dual to {r1, r2}.
Then the angle ϕ between s1 and s2 is π/m, and if θ is the angle between r1 and r2, then

θ + ϕ = π.

The order of S1S2 is m.

Proof. The group H is the symmetry group of a regular m-gon centered at the origin. We
will assume that m is even; the proof when m is odd is similar. The roots of H pass through
the vertices and midpoints of the sides of the m-gon. By definition, t is not orthogonal
to any root. Hence, the line L orthogonal to t does not contain a root. As an example,
consider the case m = 8:
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t

L

The positive roots are the roots in the half-plane determined by L which contains t, i.e., all
the roots which make an acute angle with t. The base {r1, r2} consists of the two positive
roots nearest L, and the vectors s1 and s2 are scalar multiples of the roots as indicated in
the following picture when m = 8:

t

L

r1

r2

s1s2

ϕ

θ

rS1r

It is evident that ϕ = 2π/2m = π/m and θ + ϕ = π. The element S1S2 is a rotation and
sends the positive root r on the line generated by s1 to the positive root S1r; hence, S1S2

is a rotation through an angle 2π/m. Therefore, S1S2 has order m.
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Theorem 8.3. Let G be a Coxeter group. Let ri, rj ∈ Π. Then there exists an integer
pij ≥ 1 such that

(ri, rj)

‖ri‖‖rj‖
= (ri, rj) = − cos(π/pij) = cos(

pij − 1

pij
π).

The integer pij is the order of SiSj.

Proof. If i = j then (ri, rj)/‖ri‖‖rj‖ = 1, and we take pij = 1. Assume i 6= j. Consider
the subspace W spanned by ri and rj ; this is two dimensional. We have a decomposition
of vector spaces:

V = W ⊕W⊥.

Let H be the subgroup of G generated by Si and Sj . Now ri ∈W and so W⊥ ⊂ r⊥i . Since
Si is the identity on r⊥i , it follows that Si|W⊥ = 1; similarly, Sj |W⊥ = 1. In particular, Si
and Sj map W⊥ to W⊥, and hence map W to W . It follows that the elements of H map
W to W . It follows that the map

i : H → O(W ), S 7→ S|W

is well-defined. This homomorphism is also injective: if an element maps to the identity,
then it is trivial as it is trivial on W⊥. The elements Si and Sj map to reflections in O(W )
as they have determinant −1. Hence, i(H) in O(W ) is generated by the reflections Si and
Sj ; by Theorem 4.4, i(H) is a dihedral group of order, say, 2m. The vectors ri, rj ∈ W
are roots for i(H); we claim that there exists a t in W such that {ri, rj} is a t-base for
i(H). Suppose not. Since ri and rj form a strictly obtuse angle θ (π/2 ≤ θ < π; the last
inequality follows because otherwise (ri, rj) = −1, implying that (ri + rj , ri + rj) = 0 so
that ri = −rj , contradicting the assumption that both are positive), and by our knowledge
of dihedral groups and their root systems, there exists a t′ and another root r for i(H) such
that r, ri, rj are positive roots and {r, rj} is a t′-base for i(H). We claim that r is a root for
G. To see this we first note that since r is a root for i(H), there exists S ∈ i(H) ⊂ O(W )
such that S is the reflection with respect to r⊥, where r⊥ is taken inside W . Let S′ be
the reflection on V with respect to the hyperplane r⊥⊕W⊥. We have S′(r) = −r because
(r, r⊥⊕W⊥) = 0. Now S = i(h) for some h ∈ H ⊂ G. Since h is the identity on r⊥⊕W⊥
because the elements of H are the identity on W⊥ and because S is the identity on r⊥,
and since h(r) = −r because S(r) = −r, it follows that h = S′; therefore, r is a root of G,
as claimed. We can write

ri = ar + brj

where a ≥ 0 and b ≥ 0. We cannot have a = 0; otherwise, ri = brj , by lengths and
positivity b = 1, and ri = rj , a contradiction. Similarly, by our assumption about {ri, rj}
not being a base for any t, we cannot have b = 0. Solving, we get

r = (1/a)ri − brj .
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This is a contradiction since r is a root of G and must be positive or negative. Hence, t
exists. We are now in the situation of the last lemma. We have

(ri, rj)

‖ri‖‖rj‖
= cos(θ)

= cos(π − ϕ)

= − cos(−ϕ)

= − cos(ϕ)

= − cos(2π/2m)

= − cos(π/m).

To complete the proof we note that by the lemma SiSj has order m.

We note that if Pij = 2, or equivalently, (ri, rj) = 0, then Si and Sj commute:

SiSjSiSj = 1

SjSi = SiSj .

Next, to every Coxeter group and choice of base {r1, . . . , rn} we associate a graph. The
graph has n nodes. If i 6= j and (ri, rj) 6= 0, then we join the i-th and the j-th nodes by
a branch and label the branch with pij ; note that as (ri, rj) 6= 0, we have pij ≥ 3. For
example, the graph of Hm

2 is:

m

A graph of this type is called a Coxeter graph. More precisely, a Coxeter graph is a
graph in which edges are labeled with integers greater than or equal to 3; if no label is
written, then our convention will be that the label for that edge is 3. The next proposition
shows that the Coxeter graph of a Coxeter group classifies the group up to conjugacy by
elements of O(V ).

Proposition 8.4. If G1 and G2 in O(V ) are Coxeter groups which have the same Coxeter
graph, then there exists T ∈ O(V ) such that TG1T

−1 = G2.

Proof. Let Π1 and Π2 be the bases of G1 and G2, respectively. By hypothesis, there exists
a bijection

T : Π1 → Π2

such that T preserves the labeling of the edges; by a lemma from above, this implies

(Tri, T rj) = (ri, rj)
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for 1 ≤ i, j,≤ n. Let T also denote the linear transformation T : V → V which sends ri to
Tri. Evidently, T ∈ O(V ). Let ri ∈ Π1, and let Sri be the simple reflection corresponding
to ri. Then

TSriT
−1 = STri

This implies that TSriT
−1 is contained in G2. As G1 is generated by simple reflections,

we get TG1T
−1 ⊂ G2; in fact we have TG1T

−1 = G2 because all the simple reflections for
G2 are obtained in this way.

The concept of an irreducible Coxeter group can be characterized in terms of its graph.
We say that a Coxeter graph is connected if one can get from one node to another node
via a path along branches.

Proposition 8.5. The Coxeter graph of G is connected if and only if G is irreducible.

Proof. Assume the Coxeter graph of G is connected; and assume G is reducible. Then
we can write Π = Π1 ∪ Π2 with Π1 ⊥ Π2 and Π1 and Π2 nonempty. As the graph is
connected, there exist a ∈ Π1 and b ∈ Π2 and a branch between a and b. This implies that
(a, b) 6= 0; this is a contradiction. Next, assume G is irreducible; suppose the graph for G
is not connected. Since the graph is not connected, we can write

Π = Π1 tΠ2 t · · · tΠt

where any two nodes in Πi have a path joining them, and there is no path joining an
element of Πi with an element of Πj for i 6= j. Evidently, we have Πi ⊥ Πj for i 6= j.
Hence,

Π = Π1 ∪Π′2

with
Π′2 = Π2 ∪ · · · ∪Πt

and Π1 ⊥ Π′2. This contradicts the assumption that G is irreducible.

It turns out that the Coxeter graphs of the irreducible Coxeter groups are as follows.
The subscript is the number of roots in the base, or equivalently, the dimension of the
space that the Coxeter group acts on.

An, n ≥ 1:

, , , · · ·

Bn, n ≥ 2:

4
,

4
,

4
, · · ·
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Dn, n ≥ 4

, , , · · ·

Hn
2 , n ≥ 5, n 6= 6:

5
,

7
,

8
, · · ·

G2:

6

I3:

5

I4:

5

F4:

4

E6:

E7:
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E8:

.

Before proving that these are indeed all the Coxeter graphs of the irreducible Coxeter
groups we will make few observations based on this fact. First of all, it is evident that
mostly the angle between ri and rj is

3− 1

3
π =

2

3
π = 120 degrees.

Equivalently, it means that mostly SiSj has order three. Sometimes, it can happen that
the angles and orders of SiSj are

4− 1

4
π =

3

4
π = 135 degrees, SiSj order 4

5− 1

5
π =

4

5
π = 144 degrees, SiSj order 5

6− 1

6
π =

5

6
π = 150 degrees, SiSj order 6

but the angles and orders don’t get any bigger except for the dihedral group Hn
2 . We can

make a list of the irreducible Coxeter groups in low dimensions:

Dimension 1 : A1 (2 elements);

Dimension 2 : A2 (∼= H3
2 )(6 elements), B2 (∼= H4

2 ) (8 elements),

G2 (∼= H6
2 ) (12 elements), Hn

2 , n ≥ 5, n 6= 6 (2n elements);

Dimension 3 : A3 (24 elements), B3 (48 elements), I3 (120 elements).

To prove that the above is the list of all the Coxeter graphs of all the irreducible Coxeter
groups we will need to introduce another property that these particular Coxeter graphs
enjoy. Suppose we are given a Coxeter graph with m nodes. Number the nodes. Then to
this graph we can associate an m×m symmetric matrix (αij) of real numbers by setting

αii = 1,

αij = − cos(π/pij) if the i-th and j-th node are joined by a branch labeled pij ,

αij = 0 otherwise.

The matrix (αij) is a symmetric matrix. We can associate a quadratic form on Rm to (αij);
it is defined by

Q(λ1, . . . , λm) =
∑
i,j

αijλiλj .
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The equivalence class of this quadratic form does not depend on the choice of numbering
of the nodes.

Proposition 8.6. The Coxeter graph of a Coxeter group is positive definite.

Proof. As usual, let {r1, . . . , rn} be the base of the root system. Then

αij = (ri, rj).

Therefore,

Q(λ1, . . . , λn) =
∑
i,j

(ri, rj)λiλj

= (
∑
i

, λiri,
∑
j

λjrj)

= ‖λ1r1 + · · ·+ λnrn‖2

> 0,

if (λ1, . . . , λn) 6= 0.

Proposition 8.7. The Coxeter graphs listed above are connected and positive definite.

Proof. It is clear from inspection that these Coxeter graphs are connected. To prove that
they are positive definite we will use the fact that a matrix B = (Bij), 1 ≤ i, j ≤ n is
positive definite if and only if detB(k) > 0 for 1 ≤ k ≤ n, where B(k) = (Bij), 1 ≤ i, j ≤ k.
Let us consider the matrix of the Coxeter graph An, which we will also call An. This
matrix has the form:

1 − cos(π/3) 0 0 . . .
− cos(π/3) 1 − cos(π/3) 0 . . .

0 − cos(π/3) 1 − cos(π/3) . . .
0 0 − cos(π/3) 1 . . .
. . . . . . . . . . . . . . .

 .
This is: 

1 −1/2 0 0 . . .
−1/2 1 −1/2 0 . . .

0 −1/2 1 −1/2 . . .
0 0 −1/2 1 . . .
. . . . . . . . . . . . . . .

 .
We see that the matrix An−1 is obtained by deleting the last row and column of An; also, we
see that An(n− 1) = An−1. So it will suffice to show that detAn > 0 for all n. Expanding
on the last row, we have

detAn =
n∑
j=1

(−1)n+jAnj detA(n|j)
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= (−1)2n−1An,n−1 detA(n|n− 1) + (−1)n+nAn,n detA(n|n)

= −(−1/2)(−1/2) detAn−2 + detAn−1

detAn = −(1/4) detAn−2 + detAn−1.

This is valid for n ≥ 3. We also have

detA1 = 1, detA2 = 3/4.

One can now prove by induction that

detAn = (n+ 1)/2n.

This is nonzero, so An is positive definite. We have

Bn =


1 − cos(π/4) 0 0 0 . . .

− cos(π/4) 1 − cos(π/2) 0 0 . . .
0 − cos(π/2) 1 − cos(π/2) 0 . . .
0 0 − cos(π/2) 1 − cos(π/2) . . .
. . . . . . . . . . . . . . . . . .

 ,
which is

Bn =


1 −

√
2/2 0 0 0 . . .

−
√

2/2 1 −1/2 0 0 . . .
0 −1/2 1 −1/2 0 . . .
0 0 −1/2 1 −1/2 . . .
. . . . . . . . . . . . . . . . . .

 .
We can compute the determinant of this by expanding on the first row:

detBn =
n∑
j=1

(−1)1+jB1j detB(1|j)

= (−1)1+1B11 detB(1|1) + (−1)1+2B12 detB(1|2)

= detAn−1 − (−
√

2/2)(−
√

2/2) detAn−2

= detAn−1 − (1/2) detAn−2

= (n− 1 + 1)/2n−1 − (1/2)(n− 2 + 1)/2n−2

= 1/2n−1.

Next, to deal with Dn, we need to choose a labeling:

3

1

2

4 5 n
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We have then

Dn =


1 0 − cos(π/3) 0 0 0 . . .
0 1 − cos(π/3) 0 0 0 . . .

− cos(π/3) − cos(π/3) 1 − cos(π/3) 0 0 . . .
0 0 − cos(π/3) 1 − cos(π/3) 0 . . .
. . . . . . . . . . . . . . . . . . . . .


which is

Dn =


1 0 −1/2 0 0 0 . . .
0 1 −1/2 0 0 0 . . .
−1/2 −1/2 1 −1/2 0 0 . . .

0 0 −1/2 1 −1/2 0 . . .
. . . . . . . . . . . . . . . . . . . . .

 .
Expanding on the first row, we get:

detDn =
n∑
j=1

(−1)1+jD1j detD(1|j)

= (−1)1+1D11 detD(1|1) + (−1)1+3D13 detD(1|3)

= detAn−1 + (−1/2) detD(1|3),

where

D(1|3) =


0 1 0 0 0 . . .
−1/2 −1/2 −1/2 0 0 . . .

0 0 1 −1/2 0 . . .
0 0 −1/2 1 −1/2
. . . . . . . . . . . . . . .

 .
We have

detD(1|3) = det

[
0 1
−1/2 −1/2

]
· detAn−3 = (1/2) detAn−3.

Hence,

detDn = (n− 1 + 1)/2n−1 + (−1/2)(1/2)(n− 3 + 1)/2n−3 = 1/2n−2.

We have

Hm
2 =

[
1 − cos(π/m)

− cos(π/m) 1

]
.

Hence,
detHm

2 = 1− cos2(π/m) = sin2(π/m) > 0
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as m ≥ 5. Turning to I3, we see that det I3(2) = detH5
2 > 0. Concerning det I3, we have

I3 =

 1 − cos(π/5) 0
− cos(π/5) 1 − cos(π/3)

0 − cos(π/3) 1

 =

 1 − cos(π/5) 0
− cos(π/5) 1 −1/2

0 −1/2 1

 .
The determinant of this matrix is:

det I3 = 3/4− cos2(π/5) = 3/4− [(1 +
√

5)/4]2 = (3−
√

5)/8 > 0.

Hence, I3 is positive definite. To check that I4 is positive definite we just need to check
that det I4 > 0. We have

I4 =


1 − cos(π/5) 0 0

− cos(π/5) 1 − cos(π/3) 0
0 − cos(π/3) 1 − cos(π/3)
0 0 − cos(π/3) 1



=


1 − cos(π/5) 0 0

− cos(π/5) 1 −1/2 0
0 −1/2 1 −1/2
0 0 −1/2 1

 .
We get

det I4 = 1/2− (3/4) cos2(π/5) = (7− 3
√

5)/32 > 0.

If we label F4 in the following way

4 1 2 3
4

then we have

F4 =


−1/2

B3 0
0

−1/2 0 0 1

 .
So all we need to check is that this matrix has positive determinant. We get

detF4 = det


−1/2

B3 0
0

−1/2 0 0 1



=



−1/2

B3 +

−1/4 0 0
0 0 0
0 0 0

 0

0
0 0 0 1
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= det

[
−1/4 ∗

0 A2

]
+ detB3

= −(1/4) detA2 + detB3

= 1/24.

Finally, we consider E6, E7 and E8. We label these as

n 2 3 4 5 (6) (7)

1

With this labeling, because we have already treated the case of Dn−1 it suffices to check
that detEn > 0. We have

En =



0
−1/2

Dn−1 0
...
0

0 −1/2 0 . . . 0 1


.

We calculate the determinant of this as in the F4 case. This yields

detEn = detDn−1 + det


1 0 −1/2 0 . . .
0 −1/4 −1/2 0 . . .
−1/2 0 1 −1/2 . . .

0 0 −1/2 1 . . .
...

...
...

...
...



= detDn−1 − det


0 1 −1/2 0 . . .
−1/4 1 −1/2 0 . . .

0 −1/2 1 −1/2 . . .
0 0 −1/2 1 . . .
...

...
...

...
...



= detDn−1 + det


−1/4 1 −1/2 0 . . .

0 1 −1/2 0 . . .
0 −1/2 1 −1/2 . . .
0 0 −1/2 1 . . .
...

...
...

...
...


= detDn−1 − (1/4) detAn−2

= (9− n)/2n
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> 0.

This completes the proof.

We consider a concept that is more general than a Coxeter graph. A marked graph
is a graph in which each branch is labeled with a number pij > 2. As before, we can
associate to a marked graph a symmetric matrix. A Coxeter graph is a marked graph in
which each label is an integer. If H is a marked graph, then we say that H is a subgraph
of a marked graph G if H can be obtained from G by removing some of the nodes of G
and adjoining branches, or by decreasing the marks on some of the branches of G.

Lemma 8.8. A nonempty subgraph H of a positive definite marked graph G is also positive
definite.

Proof. Let the nodes of G be a1, . . . , am, with a1, . . . , ak the nodes of H. Let the labels
for the branches of G and H be pij and qij , respectively. Let the matrices associated to
G and H be A = (αij) and B = (βij), respectively. Let the quadratic forms associated to
G and H be QG and QH , respectively. We need to show that QH is positive definite, i.e,
QH(x) > 0 for x ∈ Rk, x 6= 0. Suppose that QH(x) ≤ 0 for some x 6= 0. We have

qij ≤ pij , 1 ≤ i, j ≤ k.

Hence,

qij ≤ pij

1/qij ≥ 1/pij

π/qij ≥ π/pij

cos(π/qij) ≤ cos(π/pij)

− cos(π/qij) ≥ − cos(π/pij)

βij ≥ αij ,

for 1 ≤ i, j ≤ k. Write x = (λ1, . . . , λk) and define y = (|λ1|, . . . , |λk|, 0, . . . , 0) ∈ Rm. Then
using the fact that βij ≤ 0 for i 6= j, and the above inequality,

0 ≥ QH(x)

=
∑
i,j

βijλiλj

≥
∑
i,j

βij |λi||λj |

≥
∑
i,j

αij |λi||λj |

= QG(y)
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> 0,

which is a contradiction.

We will also need a list of certain marked graphs which are not positive definite, and
which in fact have determinant zero:

Pn, n ≥ 3:

, , , · · ·

Qn, n ≥ 5:

, , , . . . ,

Sn, n ≥ 3:

4 4
,

4 4
,

4 4
, . . .

Tn, n ≥ 4:

4

,

4

,

4

, . . .

U3:

6
,

Z4, cos(πq ) = 3
4 , 4 < q < 5:

q
,
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V5:

4
,

Y5:

5 5/2
,

R7:

,

R8:

,

R9:

.

Lemma 8.9. The above graphs are not positive definite.

Proof. The matrix of Pn has the form:
1 −1/2 0 . . . 0 −1/2
−1/2 1 −1/2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 −1/2
−1/2 0 0 . . . −1/2 1

 .
If we add to the first row the other rows then the resulting matrix has first row consisting
of just zeros. Hence, detPn = 0.

To calculate the determinant of Qn we label as follows
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n

n− 1

n− 2n− 343

1

2

.

Then the matrix of Qn is:

0 0 0

Dn−3
...

...
...

−1/2 0 0
0 . . . −1/2 1 −1/2 −1/2
0 . . . 0 −1/2 1 0
0 . . . 0 −1/2 0 1


Expanding on the last row:

detQn =
∑
j=1

(−1)n+jQnj detQ(n|j)

= (−1/2) det


0 0

Dn−3
...

...
−1/2 0

0 . . . −1/2 −1/2 −1/2
0 . . . 0 1 0

+ 1 · detDn−1

= (−1/2) det


0 0

Dn−3
...

...
−1/2 0

0 . . . 0 −1/2 −1/2
0 . . . 0 1 0

+ detDn−1

= detDn−1 − (1/4) detDn−3

= 1/2n−1−2 − (1/22)(1/2n−3−2

= 0.

The remaining determinants may be shown to be zero by similar methods.

Theorem 8.10. If G is a connected positive definite Coxeter graph, then G is one of the
graphs An, Bn, Dn, Hn

2 , G2, I3, I4, F4, E6, E7 or E8.

Proof. First of all, we see that since Pn is never positive definite, G does not contain a
circuit.
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Next, we consider the possible labels of G. Suppose G has a label n with n ≥ 6. Then
Hn

2 for n ≥ 7 or G2 is contained in G. In fact, we get G = Hn
2 or G = G2, for otherwise

U3 is contained in G. We may therefore assume that every label is 3, 4 or 5.
The remainder of the argument is now divided into cases. Suppose first that 4 is a

label. Then since Sn is not a subgraph of G, 4 is a label for exactly one edge. Also, G
cannot have a branch vertex: otherwise, Tn is a subgraph. Thus, G is just a sequence of
vertices and edges, with one edge labeled 4. As Sn is not a subgraph, no other edge can
be labeled 5. So all the edges are labeled 3, except for one edge which is labeled 4. If the
edge labeled 4 is one of the end edges, G is a Bn. Assume the edge labeled 4 is not an
end edge. If there are at least two edges on one side of the edge labeled 4, then V5 is a
subgraph, which is impossible. Hence, G is F4.

Next, suppose 4 is not a label, so that the possible labels are 3 and 5. Suppose that
5 is a label. Then 5 is a label for exactly one edge: otherwise, Sn is a subgraph. Also,
again G cannot have a branch point: otherwise Tn is a subgraph. So G is a just a sequence
of vertices and edges, with one edge labeled 5 and the rest labeled 3. The edge labeled 5
cannot be an interior edge: otherwise, Z4 is a subgraph. So the edge labeled 5 is an end
edge. There can be at most two edges besides the end edge labeled 5: otherwise, Y5 is s
subgraph. Therefore, G is H5

2 , I3 or I4.
We now must deal with the remaining case when all the edges are labeled 3. Since Qn

is not a subgraph, G can have at most one branch vertex; moreover, that branch vertex, if
it exists, must have exactly three edges coming out of it. If G has no branch vertex, then
G is an An; assume G has a (unique) branch vertex. Then at least one of the edges coming
out of the branch vertex is not connected to another edge: otherwise R7 is a subgraph. If
another edge coming out of the branch vertex is also not connected to another edge, then
G is a Dn. Assume, therefore, that exactly one edge coming out of the branch vertex is
connected to no other edge. Then besides the single edge coming out of the branch vertex,
the two other sequences of edges can be of length at most four: otherwise, R9 is a subgraph.
The picture is:

at most 4 at most 4

We cannot have at least three edges and at least three edges for otherwise R8 is a subgraph.
So we must have
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at least 2 at least 2

and at most one has three or four. Hence, G is E6, E7 or E8.
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9 The crystallographic condition

We say that a Coxeter group G is crystallographic if there exists a lattice in Rn which is
stabilized by G. We will now determine all the possible crystallographic irreducible Coxeter
groups.

Lemma 9.1. If G is a crystallographic Coxeter group, then all of the pij are 1, 2, 3, 4 or 6.

Proof. Suppose G is a crystallographic Coxeter group. Let i 6= j. To prove that pij = 2, 3, 4
or 6 we will compute the trace of SiSj in two different ways. Since G stabilizes a lattice,
there exists a basis for V such that all the matrices in G have integral entries. Hence, the
trace of SiSj is an integer.

On the other hand, we saw before that there was a basis for V such that the matrix of
SiSj in this basis has the form [

A 0
0 In−2

]
where

A =

[
cos(2π/pij) − sin(2π/pij)
sin(2π/pij) cos(2π/pij)

]
.

It follows that the trace of SiSj is

2 cos(2π/pij) + (n− 2).

This is an integer if and only 2 cos(2π/pij) is an integer. We have:

2 cos(2π/2) = 0,

2 cos(2π/3) = 1,

2 cos(2π/4) = 0,

2 cos(2π/5) = (−1 +
√

5)/2,

2 cos(2π/6) = 1.

And

pij > 6

2π/pij < π/3

2 > 2 cos(2π/pij) > 2 cos(π/3) = 1.

Hence, if pij > 6, then 2 cos(2π/pij) is not an integer.

Corollary 9.2. If G is an irreducible Coxeter group and G is crystallographic, then G has
Coxeter graph An, Bn, Dn, G2, F4, E6, E7 or E8.
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Next, suppose G is an irreducible Coxeter group and G has Coxeter graph one of the
graphs listed in the last corollary: is G crystallographic? We will show it is. To do so, we
must produce a lattice which is invariant under all the elements of G. A natural object to
look at is the base Π = {r1, . . . , rn} for G. This is a basis for V , and we can consider the
lattice spanned by these n linearly independent vectors:

Zr1 + · · ·+ Zrn.

It turns out that G often stabilizes this lattice – but not always. To get a lattice stabilized
by G we need to modify the lengths of the ri. We do this as follows:

{r′1, . . . , r′n} =


{r1, . . . , rn} if G = An, Dn, E6, E7, E8

{(1/
√

2)r1, r2, . . . , rn} if G = Bn
{(1/
√

3)r1, r2} if G = G2

{r1, r2, (1/
√

2)r3, (1/
√

2)r4} if G = F4

Lemma 9.3. If G is an irreducible Coxeter group with Coxeter graph An, Bn, Dn, G2,
F4, E6, E7 or E8, then

pij = 3 =⇒ ‖r′i‖ = ‖r′j‖

pij = 4 =⇒ ‖r′i‖ =
√

2‖r′j‖ or ‖r′j‖ =
√

2‖r′i‖

pij = 6 =⇒ ‖r′i‖ =
√

3‖r′j‖ or ‖r′j‖ =
√

3‖r′i‖.

Proof. This follows by inspection; it is useful to look at the Coxeter graph.

Theorem 9.4. If G is a Coxeter group with Coxeter graph An, Bn, Dn, G2, F4, E6, E7

or E8, then G is crystallographic.

Proof. We define the following lattice:

L = Zr′1 + · · ·+ Zr′n.

We need to verify that if 1 ≤ i, j ≤ n then Sir
′
j ∈ L. There are several cases. If pij = 1,

i.e., i = j, then Sir
′
j = Sir

′
i = −r′i ∈ L. If pij = 2, then (r′i, r

′
j) = 0. Hence,

Sir
′
j = r′j − 2

(r′j , r
′
i)

(r′i, r
′
i)
r′i = r′j ∈ L.

Assume pij = 3. Then

Sir
′
j = r′j − 2

(r′j , r
′
i)

(r′i, r
′
i)
r′i.

We also have
(r′i, r

′
j)

‖r′i‖‖r′j‖
=

(ri, rj)

‖ri‖‖rj‖
= − cos(π/3) = −1/2,
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so that
(r′i, r

′
j) = (−1/2)‖r′i‖‖r′j‖

Substituting, we get:

Sir
′
j = r′j − 2

(−1/2)‖r′i‖‖r′j‖
(r′i, r

′
i)

r′i = r′j − 2
(−1/2)‖r′i‖2

‖r′i‖2
r′i = r′j + r′i ∈ L.

Suppose pij = 4. Then

(r′i, r
′
j)

‖r′i‖‖r′j‖
=

(ri, rj)

‖ri‖‖rj‖
= − cos(π/4) = −1/

√
2,

so that

Sir
′
j = r′j − 2

(−1/
√

2)‖r′i‖‖r′j‖
(r′i, r

′
i)

r′i = r′j − 2
(−1/

√
2)‖r′i‖‖r′j‖
‖r′i‖2

r′i = r′j +
√

2
‖r′j‖
‖r′i‖

r′i.

If ‖r′i‖ =
√

2‖r′j‖, then we have

Sir
′
j = r′j +

√
2
‖r′j‖
‖r′i‖

r′i = r′j + r′i ∈ L.

If ‖r′j‖ =
√

2‖r′i‖, then we have

Sir
′
j = r′j +

√
2
‖r′j‖
‖r′i‖

r′i = r′j + 2r′i ∈ L.

Suppose pij = 6. Then

(r′i, r
′
j)

‖r′i‖‖r′j‖
=

(ri, rj)

‖ri‖‖rj‖
= − cos(π/6) = −

√
3

2
,

so that

Sir
′
j = r′j − 2

(−
√

3/2)‖r′i‖‖r′j‖
(r′i, r

′
i)

r′i = r′j − 2
(−
√

3/2)‖r′i‖‖r′j‖
‖r′i‖2

r′i = r′j +
√

3
‖r′j‖
‖r′i‖

r′i.

Suppose ‖r′i‖ =
√

3‖r′j‖. Then

Sir
′
j = r′j +

√
3
‖r′j‖
‖r′i‖

r′i = r′j + r′i ∈ L.

Suppose ‖r′j‖ =
√

3‖r′i‖. Then

Sir
′
j = r′j +

√
3
‖r′j‖
‖r′i‖

r′i = r′j + 3r′i ∈ L.

This completes the proof.



10 EXISTENCE OF COXETER GROUPS 71

10 Existence of Coxeter groups

Theorem 10.1. There exist Coxeter groups with Coxeter graphs

An, Bn, Dn, H
n
2 , G2, I3, I4, F4, E6, E7, E8.

Proof. Construction of An: Let e1, . . . , en+1 be the standard basis vectors for Rn+1. We
can let the symmetric group Sn+1 act on Rn+1 by defining

Tei = eT (i)

and extending by linearity. Consider the transpositions

S1 = (e1e2), S2 = (e2e3), . . . , Sn = (enen+1).

These elements generate Sn+1. We claim that they are also reflections. To see this, let
1 ≤ i ≤ n. Set

ri = ei+1 − ei.

Then
r⊥i = Re1 + . . .Rei−1 + R(ei + ei+1) + Rei+2 + . . .Ren+1.

And we have

Sie1 = e1

. . .

Siei−1 = ei−1

Si(ei + ei+1) = ei + ei+1

Siei+2 = ei+2

. . .

Sien+1 = en+1.

Also,
Siri = −ri.

This proves that Si is a reflection, and that ri is a root for Si; strictly speaking, we should
normalize ri so that it has length one, but we will not do this explicitly. Since Sn+1 is
generated by transpositions, we conclude that Sn+1 is a reflection group. However, Sn+1

is not a Coxeter group: it is not effective. The vector

(1, . . . , 1)

is stabilized by all the elements of Sn+1.
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To obtain a Coxeter group we define

V = (1, . . . , 1)⊥ = {(x1, . . . , xn+1) : x1 + · · ·+ xn+1 = 0}.

This hyperplane is preserved by the elements of Sn+1. We denote by An the subgroup
obtained by restricting the elements of Sn+1 to V : this is a subgroup of O(V ). Of course, the
restriction of elements of Sn+1 to V is injective. The group An is generated by reflections,
and is thus a reflection group. It is also effective. Assume v = a1e1 + · · ·+ an+1en+1 ∈ V
is fixed by all the elements of An. Then for 1 ≤ i ≤ n,

v = Siv

= a1e1 + . . . ai−1ei−1 + ai+1ei + aiei+1 + ai+2ei+2 + · · ·+ an+1en+1.

This implies that a1 = · · · = an+1. Hence, v ∈ V ⊥, and so v = 0. It follows that An is a
Coxeter group.

Next, we compute the root system of An. Already, we know that r1, . . . , rn are roots
of An. Since these are roots for a generating set of An, to find the root system of An it
suffices to apply all the elements of An to r1, . . . , rn. This is evidently:

∆ = {ei − ej : i 6= j, 1 ≤ i, j ≤ n+ 1}.

We claim that there exists an element t ∈ V such that (t, r1) > 0, . . . , (t, rn) > 0, i.e., that
the ri all lie on the same side of a half-plane. Let t = a1e1 + · · ·+ an+1en+1 be an element
of V . Then:

(t, ri) = ai+1 − ai.

We thus need
a1 < · · · < an+1 and a1 + · · ·+ an+1 = 0.

The choice
a1 = −(2 + · · ·+ n+ 1), a2 = 2, . . . , an+1 = n+ 1.

We use t to define positive and negative roots. We get:

(t, ei − ej) = ai − aj .

This implies that

∆+ = {ei − ej : i > j, 1 ≤ i, j ≤ n+ 1},
∆− = {ei − ej : i < j, 1 ≤ i, j,≤ n+ 1}.

The roots r1, . . . , rn are clearly positive. Moreover, {r1, . . . , rn} forms a base for this root
system. If ei − ej , i > j, is an arbitrary positive root, then

ei − ej = ri−1 + ri−2 + · · ·+ rj .
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Hence,
Π = {r1, . . . , rn}.

Finally, we have for i < j:

(ri, rj)

‖ri‖‖rj‖
=

{
0 if j 6= i+ 1
−1/2 = − cos(π/3) if j = i+ 1.

This implies that the Coxeter graph of An is

as desired.
Next, we construct a Coxeter group with graph Bn. This time, we will work directly

inside O(Rn), with no need to go to a smaller space inside our ambient space. Again, the
symmetric group Sn acts Rn via permutations of the coordinates. It is generated by the
transpositions:

S2 = (e1e2), S3 = (e2e3), . . . , Sn = (en−1en).

As before, S1, . . . , Sn−1 is contained in O(Rn), and in fact these elements are reflections
with S1, . . . , Sn−1 having respectively roots

r2 = e2 − e1, r2 = e3 − e2, . . . , rn = en − en−1.

Besides the subgroup Sn−1 ⊂ O(Rn) we will also consider a subgroup of O(Rn). Namely,
we consider the elements defined by

Sei(ej) =

{
ej if j 6= i
−ei if j = i.

These elements are defined for 1 ≤ i ≤ n, and are clearly contained in O(Rn). We let
Kn denote the subgroup of O(Rn) generated by these elements. Since the elements Sei all
commute with each other, and since each has order two, Kn is the direct product of the
subgroups generated by the Sei , and has order 2n. For each element k of Kn there exists
a unique subset J of {e1, . . . , en} such that

k =
∏
ei∈J

Sei .
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We denote the element corresponding to J by fJ . Of course, it sends ei to −ei if and only
if ei ∈ J ; otherwise, it sends ei to ei. We see that

fJfL = fJ∆L

where J∆L is the symmetric difference (J − L) ∪ (L− J) = (J ∪ L)− (J ∩ L). We claim
that Sn normalizes Kn. Let T ∈ Sn and fJ ∈ Kn. We assert that

TfJT
−1 = fT (J).

To see this, we compute. Let ei be a standard basis vector. Then T−1ei is another standard
basis vector, say, T−1ei = ej . We get

TfJT
−1ei = TfJej .

If ej ∈ J , this is:
TfJT

−1ei = TfJej = T (−ej) = −Tej = −ei.

If eJ /∈ J , this is:
TfJT

−1ei = TfJej = Tej = ei.

This proves our claim. We also note that

Kn ∩ Sn = 1.

This is clear because the elements of Sn never change the sign of a standard basis vector
and the only element of Kn that does not change the sign of some standard basis vector is
the identity. We may now consider the semi-direct product

Bn = Kn o Sn.

This is the subgroup of O(Rn) generated by the subgroups Kn and Sn. Every element of
Bn may be written in the form

fJT

where T ∈ Sn. We have

fJTfLS = fJTfLT
−1TS = fJfT (L)TS = fJ∆T (L)TS.

What elements generate Bn? We know that Bn is generated by the elements:

fe1 , . . . , fen , S2, . . . , Sn.

But in fact Bn is generated by smaller set. Let T ∈ Sn send e1 to ei; there are many
elements that do this. Then

Tfe1T
−1 = f{Te1} = fei .
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Since T is a product of elements from {S2, . . . , Sn}, it follows that Bn is generated by

{fe1 , S2, . . . , Sn}.

We already know that Si has a root ri = ei − ei−1 for i = 2, . . . , n; the element fe1 has a
root r1 = e1. The set

{r1 = e1, r2 = e2 − e1, . . . , rn = en − en−1}

is a basis for Rn. Is Bn a Coxeter group? It is a finite subgroup of O(Rn) generated by
reflections. Moreover, since a basis for Rn is contained in the set of roots of Bn, it is
also effective. So it is a Coxeter group. The roots of Bn are obtained by applying the
elements of Bn to the roots of a generating set. Therefore, as each element of Bn is either
a permutation or some sign changes of the standard basis vectors, the root system is:

∆ = {±ei : 1 ≤ i ≤ n} ∪ {±ei ± ej : i 6= j1 ≤ i, j ≤ n}.

Again, we want a t = (a1, . . . , an) such that r1, . . . , rn are all positive with respect to t,
i.e.,

(t, r1) = (t, e1) = a1 > 0,

(t, r2) = (t, e2 − e1) = a2 − a1 > 0,

. . .

(t, rn) = (t, en − en−1) = an − an−1 > 0.

Thus, we need
0 < a1 < · · · < an.

Such an element t certainly exists. We find that

∆+ = {e1, . . . , en} ∪ {ei − ej : 1 ≤ j < i ≤ n} ∪ {ei + ej : i 6= j, 1 ≤ i, j ≤ n}.

And

∆− = {−e1, . . . ,−en} ∪ {−ei + ej : 1 ≤ j < i ≤ n} ∪ {−ei − ej : i 6= j, 1 ≤ i, j ≤ n}.

We have

ei = ri + · · ·+ r2 + r1,

ei − ej = ri + · · ·+ rj+1,

ei + ej = (ri + · · ·+ r2 + r1) + (rj + · · ·+ r2 + r1).

It follows that
Π = {r1, . . . , rn}
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is the base. Finally, we have

(ri, rj)

‖ri‖‖rj‖
=


−1/
√

2 = − cos(π/4) ifi = 1, j = 2,
−1/2 = − cos(π/3) if j = i+ 1, i ≥ 2,
0 otherwise.

This implies that the Coxeter graph of Bn is:

Next, we consider Dn. Again, we will work inside O(Rn), and the analysis will be
similar to the case of Bn, except that we will change the notation somewhat. Let

Ln = {fJ ∈ Kn : |J | is even}.

The set Ln is a subgroup of Kn because

|J∆L| = |J |+ |L| − 2|J ∩ L|.

The formula from above shows that Sn normalizes Ln, so we can consider the semi-direct
product

Dn = Ln o Sn.

Let
r1 = e1 + e2, r2 = e2 − e1, . . . , rn = en − en−1.

We let S1, . . . , Sn be the reflections along r1, . . . , rn, respectively. Thus,

S2 = (e1e2), . . . , Sn = (en−1en).

These elements, as before, generate Sn. What about the element S1? We have

(e1 + e2)⊥ = R(e1 − e2) + Re3 + · · ·+ Ren.

Thus,

S1(e1 + e2) = −(e1 + e2),
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S1(e2 − e1) = e2 − e1,

S1e3 = e3,

. . .

S1en = en.

Thus, in fact,

S1e1 = −e2,

S1e2 = −e1.

We see that
S1 = f{e1,e2}S2.

Thus, S1 is also in Dn. We assert that S1, . . . , Sn generate Dn. To prove this, it suffices to
prove that the elements f{ei,ej} for i 6= j are contained in Dn. There exists an element T
in Sn such that T{e1, e2} = {ei, ej}. We have

Tf{e1,e2}T
−1 = f{ei,ej}.

This element is contained in the subgroup generated by S1, . . . , Sn. We obtain that Dn is
generated by the reflections S1, . . . , Sn; it is also clear that Dn is effective, as r1, . . . , rn is
a basis. Hence, Dn is a Coxeter group. To find all the roots of Dn we apply the elements
of Dn to the roots r1, . . . , rn of our generating set S1, . . . , Sn. This gives us:

∆ = {±ei ± ej : 1 ≤ j < i ≤ n}.

We want r1, . . . , rn to be positive. Therefore, we need, letting t = (a1, . . . , an),

(r1, t) = a1 + a2 > 0,

(r2, t) = a2 − a1 > 0,

. . .

(rn, t) = an − an−1 > 0.

That is, we need
an > · · · > a2 > −a1, a1.

Such an element certainly exists. We can choose a1 > 0, so that

an > · · · > a2 > a1 > 0.

The positive roots are then:

∆+ = {ei ± ej : 1 ≤ i < j ≤ n}.
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And the negative roots are:

∆− = {−ei ± ej : 1 ≤ i < j ≤ n}.

We note that

e2 = (1/2)r1 + (1/2)r2,

e3 = r3 + (1/2)r1 + (1/2)r2,

. . .

en = rn + · · ·+ r3 + (1/2)r1 + (1/2)r2.

This implies that for 1 ≤ j < i ≤ n, ei± ej is a nonnegative linear combination of elements
of {r1, . . . , rn}. Hence,

Π = {r1, . . . , rn}

is the base. Finally, we have

(ri, rj)

‖ri‖‖rj‖
=


−1/2 = − cos(π/3) if j = i+ 1, i ≥ 2,
−1/2 = − cos(π/3) if i = 1, j = 3,
0 otherwise.

Hence, the Coxeter graph of Dn is:

i) Find a set of mutually obtuse vectors {r1, . . . , rn} in Rn which form a basis such that
these vectors have Coxeter graph of the desired type.

ii) Let Si be the reflection determined by ri; set G = 〈S1, . . . , Sn〉 in O(Rn); the goal is
to prove:

a) G is finite;

b) {r1, . . . , rn} is a base for G.

This would prove that G is a Coxeter group with the desired graph. Note that G is
already effective because {r1, . . . , rn} is a basis.
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iii) The idea is to produce a finite set Γ+ of vectors such that if we set Γ = Γ+ ∪ −Γ+

then

a) SiΓ = Γ for i = 1, . . . , n.

b) {r1, . . . , rn} ⊂ Γ+, and every vector in Γ is a root for G;

c) Every vector in Γ+ is a nonnegative linear combination of r1, . . . , rn.

From the first statement it follows that G is finite: G acts on the finite set Γ∗ with
no fixed points. Hence, G is a Coxeter group. From the second statement, Γ is in
fact the root system of G: every element of Γ is contained in ∆, and as all the roots
of G are obtained by applying the elements of G to {r1, . . . , rn}, ∆ is in Γ by the first
statement. By the last statement, {r1, . . . , rn} is a base: we can always choose t such
that (t, ri) > 0 (proof: pick t such that t is perpendicular to r1−r2, r1−r3, . . . , r1−rn,
so that (t, r1) = (t, r2) = · · · = (t, rn); then multiply, if necessary, t by a scalar so
that these numbers are positive).

iv) The problem is thus reduced to finding Γ+. The algorithm for defining Γ+ is as
follows. Let Γ0 = {r1, . . . , rn}. For each r ∈ Γ0 with (r1, r) < 0 (note the strict
inequality), obtain S1r. Note that this is a root for G. Do this for the other pairs
r2, S2 through rn, Sn. Let Γ1 be the set of vectors obtained in this way, along with Γ0.
Now do the procedure again, applying it to the elements r of Γ1 − Γ0, and obtaining
Γ2. We get a chain of sets:

Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ . . . .

We note that every r in these sets is a root of G, and is a nonnegative linear com-
bination of elements of {r1, . . . , rn}. This is clear for the elements of Γ0; assume it
is true for the elements of Γj . Let r ∈ Γj+1. Then r = Sir

′ for some r′ ∈ Γj − Γj−1

with (r′, ri) < 0. We have

r = Sir
′ = r′ + (−2

(ri, r
′)

(ri, ri)
)ri.

Hence, r is a nonnegative linear combination of elements of {r1, . . . , rn}. The first
key point is to choose r1, . . . , rn so that this algorithm terminates, i.e., for some k we
have (r, ri) ≥ 0 for all i and all r ∈ Γk − Γk−1. We then set

Γ+ = Γk.

The second key point is to prove SiΓ = Γ for all i.



10 EXISTENCE OF COXETER GROUPS 80

The Coxeter graphs of irreducible Coxeter groups:

An, n ≥ 1:

, , , · · ·

Bn, n ≥ 2:

4
,

4
,

4
, · · ·

Dn, n ≥ 4

, , , · · ·

Hn
2 , n ≥ 5, n 6= 6:

5
,

7
,

8
, · · ·

G2:

6

I3:

5

I4:

5

F4:

4
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E6:

E7:

E8:

.
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Graph Base
An ri = ei+1 − ei, 1 ≤ i ≤ n

(V is the subspace of Rn+1 spanned these n vectors.)
Bn r1 = e1, ri = ei − ei−1, 2 ≤ i ≤ n
Dn r1 = e1 + e2, ri = ei − ei−1, 2 ≤ i ≤ n
Hn

2 r1 = (1, 0), r2 = (− cos(π/n), sin(π/n))
G2 r1 = e2 − e1, r2 = e1 − 2e2 + e3

I3 r1 = β(2α+ 1, 1,−2α), r2 = β(−2α− 1, 1, 2α), r3 = β(2α,−2α− 1, 1)
I4 r1 = β(2α+ 1, 1,−2α, 0), r2 = β(−2α− 1, 1, 2α, 0)

r3 = β(2α,−2α− 1, 1, 0), r4 = β(−2α, 0,−2α− 1, 1)

Here α = cos(π/5) =
1 +
√

5

4
, β = cos(2π/5) =

−1 +
√

5

4
F4 r1 = −(1/2)(e1 + e2 + e3 + e4), r2 = e1, r3 = e2 − e1, r4 = e3 − e2

E6 r1 = (1/2)(
∑3

i=1 ei −
∑8

i=4 ei), ri = ei − ei−1, 2 ≤ i ≤ 6

E7 r1 = (1/2)(
∑3

i=1 ei −
∑8

i=4 ei), ri = ei − ei−1, 2 ≤ i ≤ 7

E8 r1 = (1/2)(
∑3

i=1 ei −
∑8

i=4 ei), ri = ei − ei−1, 2 ≤ i ≤ 8
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Graph order of the group
An (n+ 1)!
Bn 2nn!
Dn 2n−1n!
Hn

2 2n
G2 12
F4 27 · 32 = 1152
I3 23 · 3 · 5 = 120
I4 26 · 32 · 52 = 14400
E6 27 · 34 · 5 = 51840
E7 210 · 34 · 5 · 7 = 2903040
E8 214 · 35 · 52 · 7 = 696729600
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Some marked graphs that are not positive definite:

Pn, n ≥ 3:

, , , · · ·

Qn, n ≥ 5:

, , , . . . ,

Sn, n ≥ 3:

4 4
,

4 4
,

4 4
, . . .

Tn, n ≥ 4:

4

,

4

,

4

, . . .

U3:

6
,

Z4, cos(πq ) = 3
4 , 4 < q < 5:

q
,

V5:
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4
,

Y5:

5 5/2
,

R7:

,

R8:

,

R9:

.
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