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Preface

These notes are for a series of lectures at the University of Idaho during the spring semester of
2025. The main source is the book [10] by Tennison called Sheaf Theory. The last update of the
notes was on April 2, 2025.
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Conventions

In these notes the formal definition of a function is as follows: A function is an ordered
triple (𝑋,𝑌, 𝑅) of sets such that: 𝑅 ⊂ 𝑋 ×𝑌 ; if 𝑥 ∈ 𝑋 , then there exists 𝑦 ∈ 𝑌 such that (𝑥, 𝑦) ∈ 𝑅;
if (𝑥, 𝑦), (𝑥, 𝑧) ∈ 𝑅, then 𝑦 = 𝑧. Thus, given a set 𝑌 , there exists exactly one function from the
empty set 𝑋 = ∅ to 𝑌 , and this function is (∅, 𝑌 , ∅) (because ∅ × 𝑌 = ∅); we refer to this function
as the empty function.
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Chapter 1

Category theory

1.1 Categories
Suppose that we are given

• a collection of objects Ob(C);
• for any two objects 𝐴, 𝐵 ∈ Ob(C), a set Mor(𝐴, 𝐵) = MorC (𝐴, 𝐵);
• and for any three objects 𝐴, 𝐵, 𝐶 ∈ Ob(C) a function

◦ : Mor(𝐵,𝐶) × Mor(𝐴, 𝐵) −→ Mor(𝐴,𝐶).

We say that this structure is a category, or more briefly, that C is a category, if the following axioms
are satisfied:

(a) Let 𝐴, 𝐵, 𝐴′, 𝐵′ ∈ Ob(C). If 𝐴 ≠ 𝐴′ or 𝐵 ≠ 𝐵′, then Mor(𝐴, 𝐵) and Mor(𝐴′, 𝐵′) are disjoint.
(b) For every 𝐴 ∈ Ob(C) there exists id𝐴 ∈ Mor(𝐴, 𝐴) such that if 𝐵 ∈ Ob(C) and 𝑓 ∈

Mor(𝐴, 𝐵), then
𝑓 ◦ id𝐴 = 𝑓 ,

and if 𝐵 ∈ Ob(C) and 𝑔 ∈ Mor(𝐵, 𝐴), then

id𝐴 ◦ 𝑔 = 𝑔.

(c) If 𝐴, 𝐵, 𝐶, 𝐷 ∈ Ob(C), and 𝑓 ∈ Mor(𝐴, 𝐵), 𝑔 ∈ Mor(𝐵,𝐶), and ℎ ∈ Mor(𝐶, 𝐷) then

(ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ).

We note that if C is a category, and 𝐴, 𝐵 ∈ Ob(C), then it may be the case that Mor(𝐴, 𝐵) = ∅ (the
empty set). Given a category C, we will refer to the elements of Mor(𝐴, 𝐵) for 𝐴, 𝐵 ∈ Ob(C) as
morphisms. Let 𝐴, 𝐵 ∈ Ob(C), and let 𝑓 ∈ Mor(𝐴, 𝐵). We say that 𝑓 is an isomorphism if there
exists 𝑔 ∈ Mor(𝐵, 𝐴) such that 𝑔 ◦ 𝑓 = id𝐴 and 𝑓 ◦ 𝑔 = id𝐵. Some important categories are:

• Set, the category of sets.
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6 CHAPTER 1. CATEGORY THEORY

• Ab, the category of abelian groups.

• Ring, the category of commutative rings.

• Mod(𝑅), the category of 𝑅-modules, where 𝑅 is a commutative ring.

Let C1 and C2 be categories. We say that C1 is a subcategory of C2, and write C1 ⊂ C2, if

(a) we have Ob(C1) ⊂ Ob(C2);
(b) for any two objects 𝐴, 𝐵 ∈ Ob(C1) we have MorC1 (𝐴, 𝐵) ⊂ MorC2 (𝐴, 𝐵);
(c) and for any three objects 𝐴, 𝐵, 𝐶 ∈ Ob(C1), the diagram

MorC1 (𝐴, 𝐵) × MorC1 (𝐵,𝐶) MorC1 (𝐴,𝐶)

MorC2 (𝐴, 𝐵) × MorC2 (𝐵,𝐶) MorC2 (𝐴,𝐶)

◦1

◦2

commutes.

Evidently,

Ring

Ab Set

Mod(𝑅)

⊂

⊂
⊂

1.2 Functors
Let A and B be categories. A covariant functor is two functions, which we refer to with the same
name,

Ob(A) 𝐹−→ Ob(B),

{morphisms of A} 𝐹−→ {morphisms of B},

such that:

(a) If 𝐴, 𝐵 ∈ Ob(A), and 𝑓 ∈ Mor(𝐴, 𝐵), then 𝐹 ( 𝑓 ) ∈ Mor(𝐹 (𝐴), 𝐹 (𝐵)).
(b) For all objects 𝐴 of A, 𝐹 (id𝐴) = id𝐹 (𝐴) .

(c) If 𝐴, 𝐵, 𝐶 ∈ Ob(A), and 𝑓 ∈ Mor(𝐴, 𝐵) and 𝑔 ∈ Mor(𝐵,𝐶), then

𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 (𝑔) ◦ 𝐹 ( 𝑓 ).
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We also define an analogous concept which reverses the direction of morphisms. We define a
contravariant functor to be two functions, which we refer to with the same name,

Ob(A) 𝐹−→ Ob(B),

{morphisms of A} 𝐹−→ {morphisms of B},

such that:

(a) If 𝐴, 𝐵 ∈ Ob(A), and 𝑓 ∈ Mor(𝐴, 𝐵), then 𝐹 ( 𝑓 ) ∈ Mor(𝐹 (𝐵), 𝐹 (𝐴)).
(b) For all objects 𝐴 of A, 𝐹 (id𝐴) = id𝐹 (𝐴) .

(c) If 𝐴, 𝐵, 𝐶 ∈ Ob(A), and 𝑓 ∈ Mor(𝐴, 𝐵) and 𝑔 ∈ Mor(𝐵,𝐶), then

𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 ( 𝑓 ) ◦ 𝐹 (𝑔).

1.3 Direct limits
Let A be a category. Let 𝐼 be a set with a partial order ≤ (this means that ≤ is a binary relation
on 𝐼 that is reflexive, antisymmetric, and transitive). Assume further that 𝐼 is directed, i.e., for
every 𝑖, 𝑗 ∈ 𝐼 there exist 𝑘 ∈ 𝐼 such that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘 . Assume that we are given 𝐴𝑖 ∈ Ob(A)
for 𝑖 ∈ 𝐼, and for every pair 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 , a morphism

𝐴𝑖
𝜌𝑖 𝑗−→ 𝐴 𝑗 .

To avoid excessive notation, we will often not mention the name of the morphism 𝜌𝑖 𝑗 and instead
indicate such morphisms with an arrow. We say that the 𝐴𝑖 and the morphisms 𝜌𝑖 𝑗 are a direct
system in A if the following hold:

(a) 𝐴𝑖 → 𝐴𝑖 is the identity for all 𝑖 ∈ 𝐼;
(b) if 𝑖, 𝑗 , 𝑘 ∈ 𝐼 with 𝑖 ≤ 𝑗 ≤ 𝑘 , then the following diagram commutes:

𝐴𝑖 𝐴 𝑗

𝐴𝑘

Assume that (𝐴𝑖)𝑖∈𝐼 is a direct system in A. A direct limit of this direct system is an
object 𝐴 ∈ Ob(A) along with a morphism

𝐴𝑖 −→ 𝐴

for each 𝑖 ∈ 𝐼 such that:

(a) For all 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 the diagram
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𝐴𝑖 𝐴 𝑗

𝐴

commutes;
(b) if 𝐵 ∈ Ob(A) and

𝐴𝑖 −→ 𝐵

for 𝑖 ∈ 𝐼 are morphisms such that

𝐴𝑖 𝐴 𝑗

𝐵

commutes for 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 , then there exists a unique morphism

𝐴 −→ 𝐵

such that

𝐴𝑖 𝐴

𝐵

commutes for all 𝑖 ∈ 𝐼.

We refer to (b) of the definition of a direct limit as the universal property of lim
→
𝐴𝑖.

Lemma 1.3.1. Let A be a category. Let (𝐴𝑖)𝑖∈𝐼 be a direct system in A, and assume that 𝐴 and 𝐵
are direct limits of this direct system. Then there exists a unique isomorphism

𝐴 −→ 𝐵

such that

𝐴𝑖

𝐴 𝐵

commutes for all 𝑖 ∈ 𝐼.

Proof. Since 𝐴 is a direct limit of (𝐴𝑖)𝑖∈𝐼 there exist a unique morphism 𝐴→ 𝐵 such that

𝐴𝑖 𝐴

𝐵
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commutes for all 𝑖 ∈ 𝐼. It remains to prove that 𝐴→ 𝐵 is an isomorphism. Since 𝐵 is also a direct
limit of (𝐴𝑖)𝑖∈𝐼 there exists a morphism 𝐵 → 𝐴 such that

𝐴𝑖 𝐵

𝐴

commutes for all 𝑖 ∈ 𝐼. It follows that
𝐴𝑖 𝐴

𝐵

𝐴

and

𝐴𝑖 𝐵

𝐴

𝐵

commute for all 𝑖 ∈ 𝐼. Since the same diagrams with

𝐴→ 𝐵 → 𝐴 and 𝐵 → 𝐴→ 𝐵 (1.1)

replaced with the identity morphisms also commute, the uniqueness property in the definition
of a direct limit implies that the compositions in (1.1) are the identity morphisms on 𝐴 and 𝐵,
respectively; thus, the morphism 𝐴→ 𝐵 is an isomorphism. □

If (𝐴𝑖)𝑖∈𝐼 is a direct system in A, and 𝐴 ∈ Ob(A) is a direct limit of (𝐴𝑖)𝑖∈𝐼 , then we will write

lim
→
𝐴𝑖 = 𝐴.

Theorem 1.3.2. Let A be the category Set, Ab, Ring, or Mod(𝑅) where 𝑅 is a commutative
ring. Every direct system in A has a direct limit.

Proof. Let (𝐴𝑖)𝑖∈𝐼 be a direct system in A. Then every object 𝐴𝑖 for 𝑖 ∈ 𝐼 is a set, and we may
assume that these sets are mutually disjoint. Define

𝑋 =
⊔
𝑖∈𝐼

𝐴𝑖,

the disjoint union of all the sets 𝐴𝑖 for 𝑖 ∈ 𝐼. We define a relation ∼ on 𝑋 in the following way.
Let 𝑎, 𝑏 ∈ 𝑋 , and let 𝑖, 𝑗 ∈ 𝐼 be such that 𝑎 ∈ 𝐴𝑖 and 𝑏 ∈ 𝐴 𝑗 . We then define 𝑎 ∼ 𝑏 if and only if
there exists 𝑘 ∈ 𝐼 such that 𝑖 ≤ 𝑘 , 𝑗 ≤ 𝑘 , and 𝜌𝑖𝑘 (𝑎) = 𝜌 𝑗 𝑘 (𝑏). It is straightfoward to verify that ∼
is reflexive, antisymmetric, and transitive, and is thus an equivalence relation. We now define 𝐴 to
be the set of equivalence classes determined by ∼:

𝐴 = 𝑋/∼ .

If 𝑎 is in 𝑋 , then we write the equivalence class determined by 𝑎 as [𝑎].
Assume first that A = Set. Then 𝐴 is an object of A. We define, for 𝑖 ∈ 𝐼,

𝐴𝑖
𝜌𝑖−→ 𝐴

by 𝜌𝑖 (𝑎) = [𝑎] for 𝑎 ∈ 𝐴𝑖. Let 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 ; we need to see that
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𝐴𝑖 𝐴 𝑗

𝐴

𝜌𝑖 𝑗

𝜌𝑖

𝜌 𝑗

commutes. Let 𝑎 ∈ 𝐴𝑖. Then

𝜌 𝑗 (𝜌𝑖 𝑗 (𝑎)) = [𝜌𝑖 𝑗 (𝑎)] and 𝜌𝑖 (𝑎) = [𝑎] .

Since 𝑗 ≤ 𝑗 and 𝑖 ≤ 𝑗 , and also 𝜌𝑖 𝑗 (𝑎) = 𝜌 𝑗 𝑗 (𝜌𝑖 𝑗 (𝑎)), we have by definition 𝑎 ∼ 𝜌𝑖 𝑗 (𝑎). It follows
that 𝜌 𝑗 (𝜌𝑖 𝑗 (𝑎)) = 𝜌𝑖 (𝑎), as desired. Next, assume that 𝐵 ∈ Ob(Set) and, for 𝑖 ∈ 𝐼,

𝐴𝑖
𝛼𝑖−→ 𝐵

are such that

𝐴𝑖 𝐴 𝑗

𝐵

𝜌𝑖 𝑗

𝛼𝑖

𝛼 𝑗

commutes for 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 . Define

𝐴
𝛼−→ 𝐵

by 𝛼( [𝑎]) = 𝛼𝑖 (𝑎) for [𝑎] ∈ 𝐴, where 𝑖 is the unique element of 𝐼 such that 𝑎 ∈ 𝐴𝑖. We claim
that 𝛼 is well-defined. To see this, assume that 𝑖, 𝑗 ∈ 𝐼, 𝑎 ∈ 𝐴𝑖, 𝑏 ∈ 𝐴 𝑗 , and 𝑎 ∼ 𝑏, i.e., [𝑎] = [𝑏].
Since 𝑎 ∼ 𝑏, there exists 𝑘 ∈ 𝐼 such that 𝑖 ≤ 𝑘 , 𝑗 ≤ 𝑘 , and 𝜌𝑖𝑘 (𝑎) = 𝜌 𝑗 𝑘 (𝑏). Then

𝜌𝑖𝑘 (𝑎) = 𝜌 𝑗 𝑘 (𝑏)
𝛼𝑘 (𝜌𝑖𝑘 (𝑎)) = 𝛼𝑘 (𝜌 𝑗 𝑘 (𝑏))

𝛼𝑖 (𝑎) = 𝛼 𝑗 (𝑏).

It follows that 𝛼 is well-defined. It is evident from the definition of 𝛼 that the diagram

𝐴𝑖 𝐴

𝐵

𝛼𝑖

𝜌𝑖

𝛼

commutes for every 𝑖 ∈ 𝐼. Finally, assume that 𝛽 : 𝐴→ 𝐵 is another morphism such that

𝐴𝑖 𝐴

𝐵

𝛼𝑖

𝜌𝑖

𝛽
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commutes for all 𝑖 ∈ 𝐼. We need to prove that 𝛽 = 𝛼. Let [𝑎] ∈ 𝐴, and let 𝑖 ∈ 𝐼 be the unique
element of 𝐼 such that 𝑎 ∈ 𝐴𝑖. Then

𝛽( [𝑎]) = 𝛽(𝜌𝑖 (𝑎))
= 𝛼𝑖 (𝑎)
= 𝛼( [𝑎]).

It follows that 𝛽 = 𝛼. We conclude that 𝐴 is a direct limit of (𝐴𝑖)𝑖∈𝐼 .
Now assume that A = Ab. We define an addition on 𝐴 as follows. Let 𝑎, 𝑏 ∈ 𝑋 , and let 𝑖, 𝑗 ∈ 𝐼

be such that 𝑎 ∈ 𝐴𝑖 and 𝑏 ∈ 𝐴 𝑗 . Since the set 𝐼 is directed, there exists ℓ ∈ 𝐼 such that 𝑖 ≤ ℓ

and 𝑗 ≤ ℓ. We define
[𝑎] + [𝑏] = [𝜌𝑖ℓ (𝑎) + 𝜌 𝑗ℓ (𝑏)] .

We claim that this addition is well-defined. Assume that [𝑎] = [𝑎′] and [𝑏] = [𝑏′] for some 𝑎′, 𝑏′ ∈
𝑋 , that 𝑖′, 𝑗 ′ ∈ 𝐼 are such that 𝑎′ ∈ 𝐴𝑖′ and 𝑏′ ∈ 𝐴 𝑗 ′ , and that ℓ′ ∈ 𝐼 is such that 𝑖′ ≤ ℓ′ and 𝑗 ′ ≤ ℓ′.
We need to prove that

𝜌𝑖ℓ (𝑎) + 𝜌 𝑗ℓ (𝑏) ∼ 𝜌𝑖′ℓ′ (𝑎′) + 𝜌 𝑗 ′ℓ′ (𝑏′), (1.2)

or equivalently, there exists 𝑡 ∈ 𝐼 such that ℓ ≤ 𝑡, ℓ′ ≤ 𝑡, and

𝜌ℓ𝑡 (𝜌𝑖ℓ (𝑎) + 𝜌 𝑗ℓ (𝑏)) = 𝜌ℓ′𝑡 (𝜌𝑖′ℓ′ (𝑎′) + 𝜌 𝑗 ′ℓ′ (𝑏′)). (1.3)

Since 𝑎 ∼ 𝑎′ and 𝑏 ∼ 𝑏′, there exist 𝑟, 𝑠 ∈ 𝐼 such that 𝑖 ≤ 𝑟, 𝑖′ ≤ 𝑟, 𝑗 ≤ 𝑠, 𝑗 ′ ≤ 𝑠, and

𝜌𝑖𝑟 (𝑎) = 𝜌𝑖′𝑟 (𝑎′) and 𝜌 𝑗 𝑠 (𝑏) = 𝜌 𝑗 ′𝑠 (𝑏′). (1.4)

Let 𝑡 ∈ 𝐼 be such that 𝑟 ≤ 𝑡 and 𝑠 ≤ 𝑡, and also ℓ ≤ 𝑡 and ℓ′ ≤ 𝑡. Then (1.4) implies that

𝜌𝑖𝑡 (𝑎) = 𝜌𝑖′𝑡 (𝑎′) and 𝜌 𝑗 𝑡 (𝑏) = 𝜌 𝑗 ′𝑡 (𝑏′).

Hence,

𝜌𝑖𝑡 (𝑎) + 𝜌 𝑗 𝑡 (𝑏) = 𝜌𝑖′𝑡 (𝑎′) + 𝜌 𝑗 ′𝑡 (𝑏′),
𝜌ℓ𝑡𝜌𝑖ℓ (𝑎) + 𝜌ℓ𝑡𝜌 𝑗ℓ (𝑏) = 𝜌ℓ′𝑡𝜌𝑖′ℓ′ (𝑎′) + 𝜌ℓ′𝑡𝜌 𝑗 ′ℓ′ (𝑏′),
𝜌ℓ𝑡 (𝜌𝑖ℓ (𝑎) + 𝜌 𝑗ℓ (𝑏)) = 𝜌ℓ′𝑡 (𝜌𝑖′ℓ′ (𝑎′) + 𝜌 𝑗 ′ℓ′ (𝑏′)).

This is (1.3). It follows that the addition we have defined on 𝐴 is well-defined. It is straightforward
to verify that this addition is associative and commutative. If 𝑖 ∈ 𝐼, then we denote the additive
identity in 𝐴𝑖 by 0𝑖. Let 𝑖, 𝑗 ∈ 𝐼. Let ℓ ∈ 𝐼 be such that 𝑖 ≤ ℓ and 𝑗 ≤ ℓ. Then

𝜌𝑖ℓ (0𝑖) = 0ℓ = 𝜌 𝑗ℓ (0 𝑗 )

because 𝜌𝑖ℓ and 𝜌 𝑗ℓ are homomorphisms. It follows that 0𝑖 ∼ 0 𝑗 . We now define 0 ∈ 𝐴 by 0 = [0𝑖];
this definition does not depend on 𝑖. It is easy to verify that 0 is an additive identity for 𝐴. Thus, 𝐴
is an abelian group. We define the homomorphisms 𝜌𝑖 : 𝐴𝑖 → 𝐴 for 𝑖 ∈ 𝐼 exactly as in the
case A = Set. It is straightforward to verify that these homomorphisms are homomorphisms, and,
arguing as in the case A = Set, that 𝐴 is a direct limit of (𝐴𝑖)𝑖∈𝐼 .

The cases A = Ring and A = Mod(𝑅) are similarly treated, and we omit the proofs. □
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Lemma 1.3.3. Let A be the category Set, Ab, Ring, or Mod(𝑅) where 𝑅 is a commutative ring.
Let (𝐴𝑖)𝑖∈𝐼 be a direct system in A. Let 𝐴 ∈ Ob(A), and assume that for each 𝑖 ∈ 𝐼, 𝜌𝑖 : 𝐴𝑖 → 𝐴

is a morphism such that
𝐴𝑖 𝐴 𝑗

𝐴

𝜌𝑖 𝑗

𝜌𝑖

𝜌 𝑗

commutes for all 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 . Assume additionally the following two conditions:

(a) For every 𝑎 ∈ 𝐴 there exists 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝐴𝑖 such that 𝜌𝑖 (𝑥) = 𝑎.
(b) For all 𝑖, 𝑗 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖, and 𝑦 ∈ 𝐴 𝑗 , we have 𝜌𝑖 (𝑥) = 𝜌 𝑗 (𝑦) if and only if there exists 𝑘 ∈ 𝐼

such that 𝑖 ≤ 𝑘 , 𝑗 ≤ 𝑘 , and 𝜌𝑖𝑘 (𝑥) = 𝜌 𝑗 𝑘 (𝑦).

Then 𝐴 is a direct limit of the direct system (𝐴𝑖)𝑖∈𝐼 . Moreover, if lim
→
𝐴𝑖 is as in the construction in

the proof of Theorem 1.3.2, then the canonical isomorphism

lim
→
𝐴𝑖

∼−→ 𝐴

sends [𝑎] ∈ lim
→
𝐴𝑖 to 𝜌𝑖 (𝑎) if 𝑖 ∈ 𝐼 is such that 𝑎 ∈ 𝐴𝑖.

Proof. To prove that 𝐴 is a direct limit of the direct system (𝐴𝑖)𝑖∈𝐼 , it will suffice to verify, for 𝐴,
the universal property from the definition of a direct limit. Assume that 𝐵 ∈ Ob(A), and for
all 𝑖 ∈ 𝐼, 𝛼𝑖 : 𝐴𝑖 → 𝐵 are morphisms such that

𝐴𝑖 𝐴 𝑗

𝐵

𝜌𝑖 𝑗

𝛼𝑖

𝛼 𝑗

commutes for 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 . Define 𝛼 : 𝐴 → 𝐵 in the following way. Let 𝑎 ∈ 𝐴. By (a),
there exist 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝐴𝑖 such that 𝜌𝑖 (𝑥) = 𝑎. Now define 𝛼(𝑎) = 𝛼𝑖 (𝑥). We claim that 𝛼 is
well-defined. Assume that 𝑖, 𝑗 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖, and 𝑦 ∈ 𝐴 𝑗 are such that 𝜌𝑖 (𝑥) = 𝜌 𝑗 (𝑦) = 𝑎. By (b),
there exists 𝑘 ∈ 𝐼 such that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘 . and 𝜌𝑖𝑘 (𝑥) = 𝜌 𝑗 𝑘 (𝑦). Hence,

𝛼𝑖 (𝑥) = 𝛼𝑘 (𝜌𝑖𝑘 (𝑥)) = 𝛼𝑘 (𝜌 𝑗 𝑘 (𝑦)) = 𝛼 𝑗 (𝑦).

This proves that 𝛼 is well-defined. We claim that 𝛼 ∈ Mor(𝐴, 𝐵). This is clear if A = Set.
Assume that A = Ab. Let 𝑎, 𝑏 ∈ 𝐴, and let 𝑖, 𝑗 ∈ 𝐼, 𝑥 ∈ 𝐴𝑖, and 𝑦 ∈ 𝐴 𝑗 be such that 𝜌𝑖 (𝑥) = 𝑎
and 𝜌 𝑗 (𝑦) = 𝑏. Let 𝑘 ∈ 𝐼 be such that 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑘 . Then

𝑎 = 𝜌𝑖 (𝑥) = 𝜌𝑘 (𝜌𝑖𝑘 (𝑥)), 𝑏 = 𝜌 𝑗 (𝑦) = 𝜌𝑘 (𝜌 𝑗 𝑘 (𝑦)),

so that
𝑎 + 𝑏 = 𝜌𝑘 (𝜌𝑖𝑘 (𝑥) + 𝜌 𝑗 𝑘 (𝑦)).

Hence,

𝛼(𝑎 + 𝑏) = 𝛼𝑘 (𝜌𝑖𝑘 (𝑥) + 𝜌 𝑗 𝑘 (𝑦))
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= 𝛼𝑘 (𝜌𝑖𝑘 (𝑥)) + 𝛼𝑘 (𝜌 𝑗 𝑘 (𝑦))
= 𝛼𝑖 (𝑥) + 𝛼 𝑗 (𝑦)
= 𝛼(𝑎) + 𝛼(𝑏).

It follows that 𝛼 ∈ Mor(𝐴, 𝐵). The argument that 𝛼 ∈ Mor(𝐴, 𝐵) if A = Ring or A = Mod(𝑅)
for a commutative ring 𝑅 is similar. Next, let 𝑖 ∈ 𝐼. To see that

𝐴𝑖 𝐴

𝐵

𝜌𝑖

𝛼𝑖 𝛼

commutes, let 𝑥 ∈ 𝐴𝑖. Then, by definition, 𝛼(𝜌𝑖 (𝑥)) = 𝛼𝑖 (𝑥). Thus, the diagram commutes.
Similarly, we see that if 𝛼′ ∈ Mor(𝐴, 𝐵) is such that

𝐴𝑖 𝐴

𝐵

𝜌𝑖

𝛼𝑖
𝛼′

commutes for all 𝑖 ∈ 𝐼, then necessarily 𝛼′ = 𝛼. This completes the verification that 𝐴 has the
required universal property. That the canonical isomorphism lim

→
𝐴𝑖

∼−→ 𝐴 is defined as described
follows from the proof of Theorem 1.3.2. □

Lemma 1.3.4. Let A be a category, and let (𝐴𝑖)𝑖∈𝐼 and (𝐵𝑖)𝑖∈𝐼 be direct systems in A. For
each 𝑖 ∈ 𝐼, assume that

𝐴𝑖
𝑓𝑖−→ 𝐵𝑖

is a morphism such that if 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 , then

𝐴𝑖 𝐵𝑖

𝐴 𝑗 𝐵 𝑗

commutes. Then there exists a unique morphism

lim
→
𝐴𝑖

𝑚−→ lim
→
𝐵𝑖

such that

𝐴𝑖 𝐵𝑖

lim
→
𝐴𝑖 lim

→
𝐵𝑖

commutes for all 𝑖 ∈ 𝐼.
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Proof. Let 𝑖, 𝑗 ∈ 𝐼 with 𝑖 ≤ 𝑗 . Since the diagrams

𝐴𝑖 𝐴 𝑗

𝐵𝑖 𝐵 𝑗

and

𝐵𝑖 𝐵 𝑗

lim
→
𝐵𝑖

commute, the diagram

𝐴𝑖 𝐴 𝑗

𝐵𝑖 𝐵 𝑗

lim
→
𝐵𝑖

commutes. This implies that there exists a unique morphism

lim
→
𝐴𝑖 −→ lim

→
𝐵𝑖

such that
𝐴𝑖 lim

→
𝐴𝑖

𝐵𝑖

lim
→
𝐵𝑖

commutes for all 𝑖 ∈ 𝐼, proving the desired assertion. □

Let the notation be as in Lemma 1.3.4. Assume further that A is Set, Ab, Ring, or Mod(𝑅)
where 𝑅 is a commutative ring, and that lim

→
𝐴𝑖 and lim

→
𝐵𝑖 are constructed as in the proof of

Theorem 1.3.2. It is then straightforward to verify that the morphism

lim
→
𝐴𝑖

𝑚−→ lim
→
𝐵𝑖

from Lemma 1.3.4 sends [𝑎] to [ 𝑓𝑖 (𝑎)] if 𝑖 ∈ 𝐼 is such that 𝑎 ∈ 𝐴𝑖.



Chapter 2

Presheaves

2.1 The definition
Let 𝑋 be a topological space. To 𝑋 we associate a category Open(𝑋) as follows. The objects
in Open(𝑋) are the open sets in 𝑋 . If𝑈 and 𝑉 are open sets in 𝑋 , then we define

Mor(𝑉,𝑈) =
{
∅ if 𝑉 ⊄ 𝑈,

{the inclusion map} if 𝑉 ⊂ 𝑈.

Let C be a category. A presheaf on 𝑋 with values in C is contravariant functor

F : Open(𝑋) −→ C.

Concretely, a presheaf F on 𝑋 provides the following:

(a) for each open subset𝑈 in 𝑋 , an object F(𝑈) of C;

(b) for open subsets𝑈 and 𝑉 of 𝑋 such that 𝑉 ⊂ 𝑈, a morphism

F(𝑈) −→ F(𝑉)

such that if 𝑈 = 𝑉 , then this morphism is the identity, and if 𝑊 is another open subset of 𝑋
with𝑊 ⊂ 𝑉 ⊂ 𝑈, then

F(𝑈) F(𝑊)

F(𝑉)

commutes.

If F is a presheaf on 𝑋 , and 𝑈 and 𝑉 are open subsets of 𝑋 with 𝑉 ⊂ 𝑈, then F(𝑈) → F(𝑉) is
referred to as a restriction morphism.

15
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2.2 Examples of presheaves
Presheaves of continuous functions. Let 𝑋 be a topological space, and let 𝑌 also be a topological
space. We define a presheaf 𝐶𝑌 on 𝑋 with values in Set by setting 𝐶𝑌 (𝑈) to be the set of all
continuous functions𝑈 → 𝑌 for all open subsets𝑈 of 𝑋 , and letting𝐶𝑌 (𝑈) → 𝐶𝑌 (𝑉) be restriction
of functions for all open subsets𝑈 and 𝑉 of 𝑋 with 𝑉 ⊂ 𝑈.
Presheaves of differentiable functions. Assume that 𝑋 is an open subset of R𝑛 for some positive
integer 𝑛. Let 𝑟 ∈ {0, 1, 2, 3, . . . ,∞}. We define a presheaf 𝐶𝑟 on 𝑋 with values in Ab by
setting 𝐶𝑟 (𝑈) to be the set of all 𝑟-times continuous differentiable functions 𝑈 → R for all open
subsets𝑈 of 𝑋 , and letting𝐶𝑟 (𝑈) → 𝐶𝑟 (𝑉) be restriction of functions for all open subsets𝑈 and𝑉
of 𝑋 with 𝑉 ⊂ 𝑈.
Presheaves of analytic functions. Assume that 𝑋 is an open subset of C𝑛 for some positive
integer 𝑛. We define a presheaf 𝐶𝜔 on 𝑋 with values in Ring by setting 𝐶𝜔 (𝑈) to be the set of all
analytic functions 𝑈 → C for all open subsets 𝑈 of 𝑋 , and letting 𝐶𝜔 (𝑈) → 𝐶𝜔 (𝑉) be restriction
of functions for all open subsets𝑈 and 𝑉 of 𝑋 with 𝑉 ⊂ 𝑈.
Constant presheaves. Let 𝑋 be a topological space, and let C be a category. Let 𝐴 be an object
in C. We define a presheaf 𝐴𝑋 on 𝑋 with values in C by setting 𝐴𝑋 (𝑈) = 𝐴 for all open subsets𝑈
of 𝑋 , and letting 𝐴𝑋 (𝑈) → 𝐴𝑋 (𝑉) be the identity element of Mor(𝐴, 𝐴) for all open subsets 𝑈
and 𝑉 of 𝑋 with 𝑉 ⊂ 𝑈. We refer to 𝐴𝑋 as a constant presheaf.
Skyscraper presheaves. Let 𝑋 be a non-empty topological space. Let 𝐴 ∈ Ob(Ab). Fix an
element 𝑥0 ∈ 𝑋 . We define a presheaf S = S𝐴 on 𝑋 with values in Ab by setting

S(𝑈) =
{
𝐴 if 𝑥0 ∈ 𝑈,
0 if 𝑥0 ∉ 𝑈

for open subsets𝑈 of 𝑋 , and letting

S(𝑈) −→ S(𝑉) be

{
id𝐴 if 𝑥0 ∈ 𝑉 ⊂ 𝑈,
0 if 𝑥0 ∉ 𝑉 ⊂ 𝑈

for all open subsets𝑈 and 𝑉 of 𝑋 with 𝑉 ⊂ 𝑈. We refer to S as a skyscraper presheaf.
A pathological example. Let 𝑋 be a 𝑇1 topological space with at least two points. (recall that 𝑇1
means that for any two elements 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ≠ 𝑏 there exists open subsets 𝑈 and 𝑉 of 𝑋 such
that 𝑎 ∈ 𝑈 and 𝑏 ∉ 𝑈 and 𝑎 ∉ 𝑉 and 𝑏 ∈ 𝑉). We define a presheaf P on 𝑋 with values in Ab by
setting

P(𝑈) =
{
Z if𝑈 = 𝑋,

0 if𝑈 ⫋ 𝑋

for open subsets𝑈 of 𝑋 , and letting

P(𝑈) −→ P(𝑉) be defined by

{
𝑥 ↦→ 0 if 𝑉 ⫋ 𝑋,
𝑥 ↦→ 𝑥 if𝑈 = 𝑉 = 𝑋

for all open subsets𝑈 and 𝑉 of 𝑋 with 𝑉 ⊂ 𝑈.
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2.3 Stalks of presheaves
Let 𝑋 be a topological space, and let C be a category. Let F be a presheaf on 𝑋 with values in C.
Assume that every direct system in C has a direct limit. In this situation, the presheaf F defines a
function from 𝑋 to Ob(C).

To explain this, let 𝑥 ∈ 𝑋 . Consider set 𝐼 = 𝐼𝑥 of all open subsets 𝑈 of 𝑋 that contain 𝑥. We
define a relation ≤ on 𝐼 by letting𝑈 ≤ 𝑉 if and only if𝑉 ⊂ 𝑈 for𝑈,𝑉 ∈ 𝐼. Evidently, ≤ is a partial
order on 𝐼 (i.e., ≤ is reflexive, antisymmetric, and transitive). The set is also directed: if 𝑈,𝑉 ∈ 𝐼,
then 𝑈 ∩ 𝑉 ∈ 𝐼 and 𝑈 ≤ 𝑈 ∩ 𝑉 and 𝑉 ≤ 𝑈 ∩ 𝑉 . The presheaf F associates a direct system to 𝐼.
Let𝑈,𝑉 ∈ 𝐼 with𝑈 ≤ 𝑉 , i.e., 𝑉 ⊂ 𝑈. The presheaf F provides a morphism

F(𝑈) −→ F(𝑉).

With these maps, we obtain a direct system (F(𝑈))𝑈∈𝐼 . We define

F𝑥 = lim→
𝑥∈𝑈

F(𝑈).

By our assumption onC, this direct limit exists. We refer toF𝑥 as the stalk ofF at 𝑥. Assume further
that C is a subcategory of Set. Let𝑈 be an open subset of 𝑋 and let 𝑥 ∈ 𝑈. Evidently, F(𝑈) → F𝑥
is a function between sets. We will sometimes refer to the elements of F𝑥 as germs. If 𝑠 ∈ F(𝑈),
then we will denote the image of 𝑠 under the function F(𝑈) → F𝑥 by 𝑠𝑥 . For us, C will usually
be Set, Ab, Ring, or Mod(𝑅). We have the following lemma.

Lemma 2.3.1. Let 𝑋 be a topological space, and let C be Set, Ab, Ring, or Mod(𝑅). Let F be
a presheaf on 𝑋 with values in C. Let 𝑥 ∈ 𝑋 .

(a) Let𝑈 be an open subset of 𝑋 such that 𝑥 ∈ 𝑈, and let 𝑒 ∈ F𝑥 . There exists an open subset𝑊
of 𝑋 and 𝑠 ∈ F(𝑊) such that 𝑥 ∈ 𝑊 ⊂ 𝑈 and 𝑠𝑥 = 𝑒.

(b) Let𝑈 and𝑉 be open subsets of 𝑋 such that 𝑥 ∈ 𝑈 and 𝑥 ∈ 𝑉 , and let 𝑠 ∈ F(𝑈) and 𝑡 ∈ F(𝑉).
If 𝑠𝑥 = 𝑡𝑥 , then there exists an open subset𝑊 of 𝑋 such that 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩𝑉 and

𝑠𝑦 = 𝑡𝑦 (2.1)

for 𝑦 ∈ 𝑊 .

Proof. (a) By the construction of F𝑥 from the proof of Theorem 1.3.2, there exists an open subset𝑉
of 𝑋 such that 𝑥 ∈ 𝑉 and 𝑟 ∈ F(𝑉) such that 𝑟𝑥 = 𝑒. Since the diagram

F(𝑉) F(𝑈 ∩𝑉)

F𝑥

𝜌𝑉,𝑈∩𝑉

commutes, we have 𝜌𝑈,𝑈∩𝑉 (𝑟)𝑥 = 𝑒. Thus, (a) holds with𝑊 = 𝑈 ∩𝑉 and 𝑠 = 𝜌𝑈,𝑈∩𝑉 (𝑟).
(b) Assume that 𝑠𝑥 = 𝑡𝑥 . By the construction ofF𝑥 from the proof of Theorem 1.3.2, since 𝑠𝑥 = 𝑡𝑥 ,

there exists an open subset 𝑊 of 𝑋 such that 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩ 𝑉 and 𝜌𝑈,𝑊 (𝑡) = 𝜌𝑉,𝑊 (𝑠) ∈ F(𝑊).
Let 𝑦 ∈ 𝑊 ⊂ 𝑈 ∩ 𝑉 . Then 𝑡 and 𝜌𝑈,𝑊 (𝑡) define the same germ in F𝑦, i.e., 𝑡𝑦 = 𝜌𝑈,𝑊 (𝑡)𝑦;
similarly, 𝑠𝑦 = 𝜌𝑉,𝑊 (𝑠)𝑦. Since 𝜌𝑈,𝑊 (𝑡) = 𝜌𝑉,𝑊 (𝑠), we obtain 𝑠𝑦 = 𝑡𝑦. □
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We consider some examples.
The stalks of the presheaf of analytic functions. Let 𝑋 be an open subset of C, and, as above,
let 𝐶𝜔 be the presheaf of analytic functions on 𝑋 . Let 𝑥 ∈ 𝑋 . How can we think of the elements
of 𝐶𝜔𝑥 ? Let 𝐺 ∈ 𝐶𝜔𝑥 . By the definition of 𝐶𝜔𝑥 , the germ 𝐺 is an equivalence class: let 𝑈 be an
open subset of 𝑋 such that 𝑥 ∈ 𝑈 and let 𝑓 ∈ 𝐶𝜔 (𝑈) be such that 𝐺 = [ 𝑓 ]. The function 𝑓 is only
one representative for 𝐺. Assume that ℎ is another representative for 𝐺. Then, from the involved
definitions, ℎ ∈ 𝐶𝜔 (𝑉) where 𝑉 is another open subset of 𝑋 such that 𝑥 ∈ 𝑉 , and there exists an
open subset𝑊 of 𝑋 such that 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩𝑉 and

ℎ |𝑊 = 𝑓 |𝑊 .

Evidently, the germ 𝐺 encodes the local behavior of 𝑓 (or any other representative for 𝐺) at 𝑥. We
can make 𝐶𝜔𝑥 even more concrete. Since 𝑓 is analytic at 𝑥, the function 𝑓 admits a power series
expansion

𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛 (𝑧 − 𝑥)𝑛

that converges to 𝑓 (𝑥) in an open disk contained in𝑈 and centered at 𝑥. We define

𝐶𝜔𝑥
∼−→ C{𝑧 − 𝑥}

by

𝑓 ↦→
∞∑︁
𝑛=0

𝑎𝑛 (𝑧 − 𝑥)𝑛.

Here, C{𝑧−𝑎} is the ring of complex power series in 𝑧−𝑥 that converge in some open disk centered
at 𝑥. This map is an isomorphism of rings.
The stalks of a constant presheaf. Let 𝑋 be a non-empty topological space, let C be a category
for which every direct system has a direct limit, let 𝐴 be an object of C, and let 𝐴𝑋 be the previously
defined constant presheaf. Let 𝑥 ∈ 𝑋 . We claim that the stalk of 𝐴𝑋 at 𝑥 is

𝐴𝑋,𝑥 = lim→
𝑥∈𝑈

𝐴𝑋 (𝑈) = 𝐴.

More precisely, for each open subset𝑈 of 𝑋 with 𝑥 ∈ 𝑈, define

𝐴𝑋 (𝑈) = 𝐴 −→ 𝐴

to be the identity. Clearly, if𝑈 and 𝑉 are open subsets of 𝑋 with 𝑥 ∈ 𝑉 ⊂ 𝑈, then

𝐴𝑋 (𝑈) 𝐴𝑋 (𝑉)

𝐴

commutes as all of these morphisms are the identity. Next, suppose that 𝐵 ∈ Ob(C), and there
exist morphisms

𝐴𝑋 (𝑈) = 𝐴 −→ 𝐵

such that if𝑈 and 𝑉 are open subsets of 𝑋 with 𝑥 ∈ 𝑉 ⊂ 𝑈, then
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𝐴𝑋 (𝑈) 𝐴𝑋 (𝑉)

𝐵

commutes. Since 𝐴𝑋 (𝑈) = 𝐴 = 𝐴𝑋 (𝑉) and 𝐴𝑋 (𝑈) → 𝐴𝑋 (𝑉) is the identity morphism for all
open subsets 𝑈 and 𝑉 of 𝑋 with 𝑥 ∈ 𝑉 ⊂ 𝑈, we see that the maps 𝐴𝑋 (𝑈) → 𝐵, for 𝑈 an open
subset of 𝑋 such that 𝑥 ∈ 𝑈, are all the same morphism 𝛼 : 𝐴 → 𝐵. Evidently, if 𝑈 is an open
subset of 𝑋 such that 𝑥 ∈ 𝑈, then

𝐴𝑋 (𝑈) 𝐴

𝐵

𝛼

commutes. Moreover, it is clear that 𝛼 is the unique such morphism.

The stalks of a skyscraper presheaf. Let 𝑋 be a topological space, let 𝐴 ∈ Ob(Ab), and fix an
element 𝑥0 ∈ 𝑋 . Let S = S𝐴 be the associated skyscraper presheaf defined above. Let 𝐶 be the
closure of the set {𝑥0} in 𝑋 . Let 𝑥 ∈ 𝑋 . We claim that the stalk S𝑥 is given by

S𝑥 =

{
𝐴 if 𝑥 ∈ 𝐶,
0 if 𝑥 ∉ 𝐶.

Let 𝑥 ∈ 𝐶. Let 𝑈 be an open subset of 𝑋 such that 𝑥 ∈ 𝑈. Then 𝑥0 ∈ 𝑈 (otherwise, 𝑋 −𝑈 is a
closed set containing 𝑥0, so that 𝑥 ∈ 𝐶 ⊂ 𝑋 −𝑈 because 𝐶 is the closure of {𝑥0}, a contradiction).
Hence, S(𝑈) = 𝐴. From this, we see that if 𝑈 and 𝑉 are open subsets of 𝑋 such that 𝑥 ∈ 𝑉 ⊂ 𝑈,
then the restriction homomorphism S(𝑈) → S(𝑉) is id𝐴. Arguing as in the case of the constant
presheaf, we obtain

S𝑥 = lim→
𝑥∈𝑈

S(𝑈) = 𝐴.

Now assume that 𝑥 ∉ 𝐶. We need to prove that S𝑥 = 0. For this, it will suffice to prove that
if 𝐵 ∈ Ob(Ab), and for each open subset𝑈 of 𝑋 such that 𝑥 ∈ 𝑈,

S(𝑈) −→ 𝐵

is a homomorphism such that

S(𝑈) S(𝑉)

𝐵

commutes for all open subsets 𝑈 and 𝑉 of 𝑋 such that 𝑥 ∈ 𝑉 ⊂ 𝑈, then S(𝑈) → 𝐵 is the zero
homomorphism for all open subsets 𝑈 of 𝑋 such that 𝑥 ∈ 𝑈. Let 𝑈 be an open subset of 𝑋 such
that 𝑥 ∈ 𝑈. Since 𝑥 ∉ 𝐶, there exists a closed subset 𝐷 of 𝑋 such that 𝑥0 ∈ 𝐷 and 𝑥 ∉ 𝐷.
Let 𝑊 = 𝑋 − 𝐷. Then 𝑥 ∈ 𝑊 and 𝑥0 ∉ 𝑊 . Define 𝑉 = 𝑊 ∩𝑈. Then 𝑥 ∈ 𝑉 ⊂ 𝑈. As 𝑥0 ∉ 𝑉 , we
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have S(𝑉) = 0; hence, the homomorphism S(𝑈) → S(𝑉) is the zero homomorphism. It follows
that S(𝑈) → 𝐵 is also the zero homomorphism, as desired.

The stalks of the pathological example. Let 𝑋 be a 𝑇1 topological space with at least two points,
and let P be the pathological presheaf from above. Let 𝑥 ∈ 𝑋 . We claim that P𝑥 = 0, i.e.,

lim→
𝑥∈𝑈

P(𝑈) = 0.

To prove this, it will suffice to prove that if 𝐵 ∈ Ob(Ab), and for each open subset 𝑈 of 𝑋 such
that 𝑥 ∈ 𝑈,

P(𝑈) −→ 𝐵

is a homomorphism such that

P(𝑈) P(𝑉)

𝐵

commutes for all open subsets 𝑈 and 𝑉 of 𝑋 such that 𝑥 ∈ 𝑉 ⊂ 𝑈, then P(𝑈) → 𝐵 is the zero
homomorphism for all open subsets 𝑈 of 𝑋 such that 𝑥 ∈ 𝑈. Let 𝑈 be an open subset of 𝑋 such
that 𝑥 ∈ 𝑈. If𝑈 ≠ 𝑋 , then P(𝑈) = 0 by definition, so that P(𝑈) → 𝐵 is the zero homomorphism.
Assume that 𝑈 = 𝑋 . By our assumption, there exists 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦. Also, since 𝑋 is 𝑇1, there
exists an open subset 𝑉 of 𝑋 such that 𝑥 ∈ 𝑉 but 𝑦 ∉ 𝑉 . The homomorphism

P(𝑈) = Z −→ P(𝑉) = 0

is necessarily the zero homomorphism. This implies that P(𝑈) → 𝐵 is also the zero homomor-
phism.

2.4 Morphisms of presheaves
Let 𝑋 be a topological space, let C be a category, and let F and G be presheaves on 𝑋 with values
in C. A morphism of presheaves

F
𝑓

−→ G

is a collection of morphisms {
F(𝑈)

𝑓 (𝑈)
−→ G(𝑈)

}
𝑈 ⊂ 𝑋 open

such that for all open subsets𝑈 and 𝑉 of 𝑋 with 𝑉 ⊂ 𝑈 the diagram

F(𝑈) G(𝑉)

F(𝑉) G(𝑉)

𝑓 (𝑈)

𝑓 (𝑉)

(2.2)
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commutes. Evidently, the collection

F
idF−→ F =

{
F(𝑈)

idF(𝑈)−→ F(𝑈)
}
𝑈 ⊂ 𝑋 open

is a morphism of presheaves. The composition of morphisms of presheaves is defined in the obvious
way. We say that 𝑓 : F → G is an isomorphism if there exists a morphism 𝑔 : G → F such
that 𝑔 ◦ 𝑓 = idF and 𝑓 ◦ 𝑔 = idG. We note that the morphism 𝑓 : F → G also induces morphisms
of stalks. Let 𝑥 ∈ 𝑋 . If𝑈 and 𝑉 are open subsets of 𝑋 such that 𝑥 ∈ 𝑉 ⊂ 𝑈, then the diagram (2.2)
commutes. By Lemma 1.3.4, this implies that there exists a unique morphism

F𝑥 = lim→
𝑥∈𝑈

F(𝑈) −→ G𝑥 = lim→
𝑥∈𝑈

G(𝑈)

such that
F(𝑈) G(𝑈)

F𝑥 G𝑥

𝑓 (𝑈)

commutes for all open subsets𝑈 of 𝑋 such that 𝑥 ∈ 𝑈.

Lemma 2.4.1. Let 𝑋 be a topological space, let C be a category, and let F and 𝐺 be presheaves
on 𝑋 with values in C. Let 𝑓 : F → G be a morphism of presheaves. Then 𝑓 is an isomorphism if
and only if 𝑓 (𝑈) is an isomorphism for every open subset𝑈 of 𝑋 .

Proof. Assume that 𝑓 is an isomorphism, with inverse 𝑔 : G → F. Then 𝑔◦ 𝑓 = idF and 𝑓 ◦𝑔 = idG.
This means that for all open subsets𝑈 of 𝑋 we have 𝑔(𝑈)◦ 𝑓 (𝑈) = idF(𝑈) and 𝑓 (𝑈)◦𝑔(𝑈) = idG(𝑈) .
It follows that 𝑓 (𝑈) is an isomorphism for all open subsets𝑈 of 𝑋 .

Conversely, assume that 𝑓 (𝑈) is an isomorphism for all open subsets 𝑈 of 𝑋 . For each open
subset𝑈 of 𝑋 , let 𝑔(𝑈) : G(𝑈) → F(𝑈) be the inverse of 𝑓 (𝑈) : F(𝑈) → G(𝑈). We claim that{

G(𝑈)
𝑔(𝑈)
−→ F(𝑈)

}
𝑈 ⊂ 𝑋 open

is a morphism of presheaves. Let𝑈 and𝑉 be open subsets of 𝑋 with𝑉 ⊂ 𝑈. Since 𝑓 is a morphism
of presheaves

F(𝑈) G(𝑉)

F(𝑉) G(𝑉)

𝑓 (𝑈)

𝛼 𝛽

𝑓 (𝑉)

commutes; here, we have given names to the restriction morphisms. We have:

𝛽 ◦ 𝑓 (𝑈) = 𝑓 (𝑉) ◦ 𝛼
𝛽 ◦ 𝑓 (𝑈) ◦ 𝑔(𝑈) = 𝑓 (𝑉) ◦ 𝛼 ◦ 𝑔(𝑈)

𝛽 ◦ idG(𝑈) = 𝑓 (𝑉) ◦ 𝛼 ◦ 𝑔(𝑈)
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𝛽 = 𝑓 (𝑉) ◦ 𝛼 ◦ 𝑔(𝑈)
𝑔(𝑉) ◦ 𝛽 = 𝑔(𝑉) ◦ 𝑓 (𝑉) ◦ 𝛼 ◦ 𝑔(𝑈)
𝑔(𝑉) ◦ 𝛽 = idF(𝑉) ◦ 𝛼 ◦ 𝑔(𝑈)
𝑔(𝑉) ◦ 𝛽 = 𝛼 ◦ 𝑔(𝑈).

Thus,

G(𝑈) F(𝑉)

G(𝑉) F(𝑉)

𝑔(𝑈)

𝛼 𝛽

𝑔(𝑉)

commutes. It follows that

G
𝑔

−→ F =

{
G(𝑈)

𝑔(𝑈)
−→ F(𝑈)

}
𝑈 ⊂ 𝑋 open

is a morphism of presheaves. Since 𝑔 ◦ 𝑓 = idF and 𝑓 ◦ 𝑔 = idG, the morphism 𝑓 is an
isomorphism. □



Chapter 3

Sheaves

3.1 The definition
Let 𝑋 be a topological space. Let 𝑈 be an open subset of 𝑋 . An open cover of 𝑈 consists of a
set 𝐼, and for each 𝑖 ∈ 𝐼, an open subset𝑈𝑖 of𝑈, such that𝑈 = ∪𝑖∈𝐼𝑈𝑖. Next, let C be a subcategory
of Set, and let F be a presheaf on 𝑋 with values in C. If 𝑈 and 𝑉 are open subsets of 𝑋 such
that𝑉 ⊂ 𝑈, then we will denote the restriction morphismF(𝑈) → F(𝑉) by 𝜌𝑈,𝑉 ; note that sinceC
is a subcategory of Set, the morphism 𝜌𝑈,𝑉 is actually a function between sets.

Given these circumstances, we consider two conditions. The first condition is called the gluing
condition and is stated as follows:

(G) If 𝑈 is an open subset of 𝑋 , {𝑈𝑖}𝑖∈𝐼 is an open cover of 𝑈, {𝑠𝑖}𝑖∈𝐼 is such that 𝑠𝑖 ∈ F(𝑈𝑖)
for 𝑖 ∈ 𝐼, and for all 𝑖, 𝑗 ∈ 𝐼 we have 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

(𝑠𝑖) = 𝜌𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑠 𝑗 ), then there exists 𝑠 ∈ F(𝑈)

such that 𝜌𝑈,𝑈𝑖
(𝑠) = 𝑠𝑖 for all 𝑖 ∈ 𝐼.

The gluing condition asserts that if a collection of local sections agree on overlaps, then these local
sections are the restriction of a section. We also consider the following condition:

(L) If 𝑈 is an open subset of 𝑋 , {𝑈𝑖}𝑖∈𝐼 is an open cover of 𝑈, and 𝑠, 𝑠′ ∈ F(𝑈) are such that
𝜌𝑈,𝑈𝑖

(𝑠) = 𝜌𝑈,𝑈𝑖
(𝑠′) for all 𝑖 ∈ 𝐼, then 𝑠 = 𝑠′.

We will sometimes refer to condition (L) as the locality condition. If conditions (G) and (L) both
hold, and if a collection of local sections agree on overlaps, then by (G) these local sections are the
restriction of a section, and by (L) this section is unique. If F satisfies both (G) and (L), then we say
that F is a sheaf. If F satisfies (L) (but possibly not (G)), then we say that F is a monopresheaf
or a separated presheaf.

Let 𝑋 be a topological space, and let C be a subcategory of Set. Let F and G be sheaves on 𝑋
with values in C. In this case, we define a morphism F → G exactly as in the case of presheaves.

Proposition 3.1.1. Let 𝑋 be a topological space, let C be a subcategory of Set, and let F be
a monopresheaf on 𝑋 with values in C. Let 𝑈 be an open subset of 𝑋 , and let 𝑠, 𝑠′ ∈ F(𝑈).
Then 𝑠 = 𝑠′ if and only if 𝑠𝑥 = 𝑠′𝑥 for all 𝑥 ∈ 𝑈.

Proof. It is clear that if 𝑠 = 𝑠′, then 𝑠𝑥 = 𝑠′𝑥 for all 𝑥 ∈ 𝑈. Assume that 𝑠𝑥 = 𝑠′𝑥 for all 𝑥 ∈ 𝑈.
Let 𝑥 ∈ 𝑈. Since 𝑠𝑥 = 𝑠′𝑥 , there exists an open subset 𝑉𝑥 of 𝑋 such that 𝑥 ∈ 𝑉𝑥 ⊂ 𝑈 and 𝜌𝑈,𝑉𝑥 (𝑠) =

23
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𝜌𝑈,𝑉𝑥 (𝑠′). The collection {𝑉𝑥}𝑥∈𝑈 is an open cover of 𝑈. Applying the locality condition (L) to
this cover and 𝑠 and 𝑠′ we conclude that 𝑠 = 𝑠′. □

Corollary 3.1.2. Let 𝑋 be a topological space, let C be a subcategory of Set, and let F and G

be presheaves on 𝑋 with values in C. Let 𝑓 , 𝑓 ′ : F → G be maps of presheaves. Assume further
that G is a monopresheaf. If 𝑓𝑥 = 𝑓 ′𝑥 for all 𝑥 ∈ 𝑋 , then 𝑓 = 𝑓 ′.

Proof. Let𝑈 be an open subset of 𝑋 . We need to prove that 𝑓 (𝑈), 𝑓 ′(𝑈) : F(𝑈) → G(𝑈) are the
same function. Let 𝑠 ∈ F(𝑈); we need to prove that 𝑓 (𝑈) (𝑠) = 𝑓 ′(𝑈) (𝑠). Let 𝑥 ∈ 𝑈. Since the
diagrams

F(𝑈) G(𝑈)

F𝑥 = lim→
𝑥∈𝑉

F(𝑉) G𝑥 = lim→
𝑥∈𝑉

G(𝑉)

𝑓 (𝑈)

𝑓𝑥

and

F(𝑈) G(𝑈)

F𝑥 = lim→
𝑥∈𝑉

F(𝑉) G𝑥 = lim→
𝑥∈𝑉

G(𝑉)

𝑓 ′ (𝑈)

𝑓 ′𝑥

commute, we have:

𝑓 (𝑈) (𝑠)𝑥 = 𝑓𝑥 (𝑠𝑥)
= 𝑓 ′𝑥 (𝑠𝑥) (because 𝑓𝑥 = 𝑓 ′𝑥)
= 𝑓 ′(𝑈) (𝑠)𝑥 .

Since 𝑓 (𝑈) (𝑠)𝑥 = 𝑓 ′(𝑈) (𝑠)𝑥 for all 𝑥 ∈ 𝑈, Proposition 3.1.1 implies that 𝑓 (𝑈) (𝑠) = 𝑓 ′(𝑈) (𝑠). □

Lemma 3.1.3. Let 𝑋 be a topological space, let C be a subcategory of Set, and let F and G be
presheaves on 𝑋 with values in C. Let 𝑓 : F → G be an isomorphism of presheaves. If F is a
sheaf, then so is G.

Proof. We first verify the gluing condition (G). Let 𝑈 be an open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an
open cover of 𝑈, let {𝑠𝑖}𝑖∈𝐼 be such that 𝑠𝑖 ∈ G(𝑈𝑖) for 𝑖 ∈ 𝐼, and assume that for all 𝑖, 𝑗 ∈ 𝐼 we
have 𝜌G

𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝑠𝑖) = 𝜌G𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗

(𝑠 𝑗 ). For 𝑖 ∈ 𝐼, define 𝑟𝑖 = 𝑓 (𝑈)−1(𝑠𝑖) ∈ F(𝑈𝑖). Then for all 𝑖, 𝑗 ∈ 𝐼
we have 𝜌F

𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝑟𝑖) = 𝜌F

𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑟 𝑗 ). Since F is a sheaf, F satisfies the gluing condition (G).

Hence, there exists 𝑟 ∈ F(𝑈) such that 𝜌F
𝑈,𝑈𝑖

(𝑟) = 𝑟𝑖 for 𝑖 ∈ 𝐼. Set 𝑠 = 𝑓 (𝑈) (𝑟) ∈ G(𝑈).
Then 𝜌G

𝑈,𝑈𝑖
(𝑠) = 𝑠𝑖 for 𝑖 ∈ 𝐼. This verifies the gluing condition for G. The locality condition (L)

for G is similarly verified. □

3.2 Which presheaf examples are sheaves?
We consider which of the examples of presheaves from Section 2.2 are sheaves.

Presheaves of continuous, differentiable, and analytic functions. The presheaves𝐶𝑌 ,𝐶𝑟 , and𝐶𝜔
are all sheaves. For example, suppose 𝑋 and𝑌 are topological spaces, and consider the presheaf𝐶𝑌 .
To verify the gluing condition (G), let𝑈 be an open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an open cover of𝑈,
and let { 𝑓𝑖}𝑖∈𝐼 be such that 𝑓𝑖 ∈ 𝐶𝑌 (𝑈𝑖) for 𝑖 ∈ 𝐼 and for all 𝑖, 𝑗 ∈ 𝐼, we have 𝑓𝑖 |𝑈𝑖∩𝑈 𝑗

= 𝑓 𝑗 |𝑈𝑖∩𝑈 𝑗
.

Define 𝑓 : 𝑈 → 𝑌 by 𝑓 (𝑥) = 𝑓𝑖 (𝑥) for 𝑥 ∈ 𝑈 and 𝑖 ∈ 𝐼 such that 𝑥 ∈ 𝑈𝑖. Then 𝑓 is well-defined and
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continuous, and 𝑓 |𝑈𝑖
= 𝑓𝑖 for 𝑖 ∈ 𝐼. This verifies the gluing condition (G). The locality condition (L)

is similarly verified.
Constant presheaves. Let 𝑋 be a topological space, and assume that C is a subcategory of Set.
Let 𝐴 be an object of C. In Section 2.2 we defined the constant sheaf 𝐴𝑋 on 𝑋 with values in C.
The presheaf 𝐴𝑋 is not always a sheaf. For example, assume that 𝐴 contains at least two elements 𝑠
and 𝑠′. Then 𝐴𝑋 does not satisfy the locality condition (L). To see this, let 𝑈 = ∅. For an open
cover of 𝑈 we let 𝐼 = ∅. We have 𝐴𝑋 (𝑈) = 𝐴𝑋 (∅) = 𝐴 so that 𝑠, 𝑠′ ∈ 𝐴𝑋 (𝑈). Then the condition
in the locality condition (L) is trivially satisfied; however, 𝑠 ≠ 𝑠′.
Skyscraper presheaves. Let 𝑋 be a non-empty topological space, let 𝐴 ∈ Ob(Ab), and let 𝑥0 ∈ 𝑋 .
In Section 2.2 we defined the associated skyscraper presheaf S𝐴 on 𝑋 with values in Ab. We claim
that S is a sheaf.

To verify the gluing condition (G), let 𝑈 be an open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an open cover
of 𝑈, and let {𝑠𝑖}𝑖∈𝐼 be such that 𝑠𝑖 ∈ S(𝑈𝑖) and 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

(𝑠𝑖) = 𝜌𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑠 𝑗 ) for 𝑖, 𝑗 ∈ 𝐼.

Assume that 𝑥0 ∉ 𝑈. Then S(𝑈𝑖) = 0 for all 𝑖 ∈ 𝐼 so that 𝑠𝑖 = 0 for all 𝑖 ∈ 𝐼; hence,
setting 𝑠 = 0, we have 𝜌𝑈,𝑈𝑖

(𝑠) = 𝑠𝑖 for all 𝑖 ∈ 𝐼. Assume that 𝑥0 ∈ 𝑈. Let 𝑘 ∈ 𝐼 be
such that 𝑥0 ∈ 𝑈𝑘 . Then S(𝑈𝑘 ) = 𝐴 = S(𝑈). Define define 𝑠 = 𝑠𝑘 ; note that 𝑠 ∈ S(𝑈).
Let 𝑖 ∈ 𝐼. If 𝑥0 ∉ 𝑈𝑖, then S(𝑈𝑖) = 0 so that 𝑠𝑖 = 0, and we have 𝜌𝑈,𝑈𝑖

(𝑠) = 𝑠𝑖. Assume
that 𝑥0 ∈ 𝑈𝑖. By assumption, we have 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈𝑘

(𝑠𝑖) = 𝜌𝑈𝑘 ,𝑈𝑖∩𝑈𝑘
(𝑠𝑘 ); sinceS(𝑈𝑘 ) = S(𝑈𝑖∩𝑈𝑘 ) = 𝐴

and 𝜌𝑈𝑘 ,𝑈𝑖∩𝑈𝑘
= 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈𝑘

= id𝐴, this implies that 𝑠𝑖 = 𝑠𝑘 = 𝑠. Similarly, 𝜌𝑈,𝑈𝑖
(𝑠) = id𝐴 (𝑠) = 𝑠. It

follows that 𝜌𝑈,𝑈𝑖
(𝑠) = 𝑠𝑖. This verifies the gluing condition (G).

To verify the locality condition (L), let 𝑈 be an open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an open cover
of 𝑈, and let 𝑠, 𝑠′ ∈ S(𝑈) be such that 𝜌𝑈,𝑈𝑖

(𝑠) = 𝜌𝑈,𝑈𝑖
(𝑠′) for all 𝑖 ∈ 𝐼. Assume first that 𝑥0 ∉ 𝑈.

Then S(𝑈) = 0, and 𝑠 = 𝑠′ = 0. Assume that 𝑥0 ∈ 𝑈. Then 𝑥0 ∈ 𝑈𝑘 for some 𝑘 ∈ 𝐼. We
have S(𝑈) = S(𝑈𝑘 ) = 𝐴 and 𝜌𝑈,𝑈𝑘

= id𝐴. Since 𝜌𝑈,𝑈𝑘
(𝑠) = 𝜌𝑈,𝑈𝑘

(𝑠′), we obtain 𝑠 = 𝑠′. This
verifies the locality condition (L).
The pathological example. Let 𝑋 be a 𝑇1 topological space with at least two points, and let P be
the presheaf on 𝑋 with values in Ab defined in Section 2.2. We claim that P is not a sheaf. By our
assumptions on 𝑋 , there exists an open cover {𝑈𝑖}𝑖∈𝐼 of 𝑋 such that 𝑈𝑖 for 𝑖 ∈ 𝐼 is a proper subset
of 𝑋 . Consider the elements 0, 1 ∈ P(𝑋) = Z. We have 𝜌𝑋,𝑈𝑖

(0) = 0 = 𝜌𝑋,𝑈𝑖
(1) for all 𝑖 ∈ 𝐼;

however, 0 ≠ 1. Thus, P does not satisfy the locality condition (L).

3.3 Étalé spaces
Let 𝑋 be a topological space. An Étalé space over 𝑋 is a pair (𝐸, 𝑝) where 𝐸 is a topological
space and 𝑝 : 𝐸 → 𝑋 is a function that is a local homeomorphism (i.e., for every 𝑎 ∈ 𝐸 there
exists an open subset 𝐶 of 𝐸 and an open subset 𝑉 of 𝑋 such that 𝑎 ∈ 𝐶, 𝑝(𝐶) = 𝑉 , and the
function 𝑝 |𝐶 : 𝐶 → 𝑉 is a homeomorphism). Let (𝐸, 𝑝) and (𝐸′, 𝑝′) be étalé spaces over 𝑋 . A
morphism 𝑓 : (𝐸, 𝑝) → (𝐸′, 𝑝′) is a continuous function 𝑓 : 𝐸 → 𝐸′ such that

𝐸 𝐸′

𝑋

𝑝

𝑓

𝑝′
(3.1)

commutes.
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Some topology
Lemma 3.3.1. Let𝑌1 and𝑌2 be topological spaces and let 𝑓 : 𝑌1 → 𝑌2 be a local homeomorphism.
Then 𝑓 is continuous and open.

Proof. To prove that 𝑓 is continuous, let 𝑈 be an open subset of 𝑌2; we need to prove that 𝑓 −1(𝑈)
is open. Let 𝑦 ∈ 𝑓 −1(𝑈). Since 𝑓 is a local homeomorphism, there exists an open subset 𝑉𝑦
of 𝑌1 such that 𝑦 ∈ 𝑉𝑦, 𝑓 (𝑉𝑦) is open, and 𝑓 |𝑉𝑦 : 𝑉𝑦 → 𝑓 (𝑉𝑦) is a homeomorphism. Evidently, we
have 𝑓 (𝑦) ∈ 𝑓 (𝑉𝑦) ∩𝑈. Define𝑈𝑦 = ( 𝑓 |𝑉𝑦 )−1( 𝑓 (𝑉𝑦) ∩𝑈). The set𝑈𝑦 is an open subset of 𝑌1,𝑈𝑦
is contained in 𝑓 −1(𝑈), and 𝑦 ∈ 𝑈𝑦. Since 𝑓 −1(𝑈) is the union of the open sets𝑈𝑦 for 𝑦 ∈ 𝑓 −1(𝑈),
the set 𝑓 −1(𝑈) is open.

To see that 𝑓 is open, let 𝐶 be an open subset of 𝑌1. Since 𝑓 is a local homeomorphism, the
open set 𝐶 admits an open cover {𝐶𝑖}𝑖∈𝐼 of open subsets of 𝑌1 such that 𝑓 (𝐶𝑖) is open for 𝑖 ∈ 𝐼. It
follows that the set 𝑓 (𝐶) = ∪𝑖∈𝐼 𝑝(𝐶𝑖) is open. □

Lemma 3.3.2. Let 𝑋 be a topological space, and let (𝐸, 𝑝) and (𝐸′, 𝑝′) be étalé spaces over 𝑋 .
Let 𝑓 : 𝐸 → 𝐸′ be a function such that the diagram (3.1) commutes. The following are equivalent:

(a) 𝑓 is continuous.
(b) 𝑓 is open.
(c) 𝑓 is a local homeomorphism.

Proof. (c) =⇒ (a) and (b). This follows from Lemma 3.3.1.
(a) =⇒ (c). Assume that 𝑓 is continuous. Let 𝑎 ∈ 𝐸 . Since 𝑝′ is a local homeomorphism,

there exists an open subset 𝐶′ of 𝐸′ such that 𝑓 (𝑎) ∈ 𝐶′, 𝑝′(𝐶′) is an open subset of 𝑋 , and the
function 𝑝′|𝐶′ : 𝐶′ → 𝑝(𝐶′) is a local homeomorphism. Since 𝑓 is continuous, there exists an open
subset 𝐷 of 𝐸 such that 𝑎 ∈ 𝐷 and 𝑓 (𝐷) ⊂ 𝐶′. Also, since 𝑝 is a local homeomorphism, there
exists an open subset𝐶 of 𝐸 such that 𝑎 ∈ 𝐶 ⊂ 𝐷, 𝑝(𝐶) is an open subset of 𝑋 , and 𝑝 |𝐶 : 𝐶 → 𝑝(𝐶)
is a homeomorphism. Since 𝑝 = 𝑝′ ◦ 𝑓 and 𝑓 (𝐶) ⊂ 𝐶′, we have 𝑝(𝐶) = 𝑝′( 𝑓 (𝐶)) ⊂ 𝑝′(𝐶′).
Since 𝑝(𝐶) ⊂ 𝑝′(𝐶′), 𝑝(𝐶) is open in 𝑋 , and 𝑝′|𝐶′ : 𝐶′ → 𝑝(𝐶′) is a homeomorphism, the
set (𝑝′|𝐶′)−1(𝑝(𝐶)) is an open subset of 𝐶′. Using 𝑝 = 𝑝′ ◦ 𝑓 it is straightforward to verify
that 𝑓 (𝐶) = (𝑝′|𝐶′)−1(𝑝(𝐶)). It follows that 𝑓 (𝐶) is an open subset of 𝐶′. We now have a
commutative diagram

𝐶 𝑓 (𝐶)

𝑝(𝐶) = 𝑝′( 𝑓 (𝐶))
𝑝 |𝐶

𝑓 |𝐶

𝑝′ | 𝑓 (𝐶 )

where every set is open. Since 𝑝 |𝐶 = (𝑝′| 𝑓 (𝐶)) ◦ 𝑓 |𝐶 and 𝑝 |𝐶 and 𝑝′| 𝑓 (𝐶) are homeomorphisms,
the function 𝑓 |𝐶 : 𝐶 → 𝑓 (𝐶) is also a homeomorphism.

(b) =⇒ (c). Assume that 𝑓 is open. Let 𝑎 ∈ 𝐸 . Since 𝑝 is a local homeomorphism, there
exists an open set 𝐶 such that 𝑎 ∈ 𝐶, 𝑝(𝐶) is open, and 𝑝 |𝐶 : 𝐶 → 𝑝(𝐶) is a homeomorphism.
Since 𝑓 is open, the subset 𝑓 (𝐶) of 𝐸′ is open. Also, since 𝑓 (𝑎) is contained in the open set 𝑓 (𝐶)
and 𝑝′ is a local homeomorphism, there exists an open subset 𝐶′ of 𝐸′ such that 𝑓 (𝑎) ∈ 𝐶′ ⊂ 𝑓 (𝐶)
and 𝑝′|𝐶′ : 𝐶′ → 𝑝(𝐶′) is a local homeomorphism. Define 𝑉 = 𝑝(𝐶) ∩ 𝑝(𝐶′), 𝐷 = (𝑝 |𝐶)−1(𝑉),
and 𝐷′ = (𝑝 |𝐶′)−1(𝑉). Then 𝑝 |𝐷 : 𝐷 → 𝑉 and 𝑝′|𝐷′ : 𝐷′ → 𝑉 are homeomorphisms. We



3.3. ÉTALÉ SPACES 27

claim that 𝑓 (𝐷) ⊂ 𝐷′. Let 𝑑 ∈ 𝐷. Then 𝑝(𝑑) ∈ 𝑝(𝐷) = 𝑉 = 𝑝′(𝐷′). Let 𝑑′ ∈ 𝐷′ be
such that 𝑝′(𝑑′) = 𝑝(𝑑). Since 𝐷′ ⊂ 𝐶′ ⊂ 𝑓 (𝐶), there exists 𝑐 ∈ 𝐶 such that 𝑓 (𝑐) = 𝑑′.
Now 𝑝′(𝑑′) = 𝑝′( 𝑓 (𝑐)) = 𝑝(𝑐). It follows that 𝑝(𝑑) = 𝑝(𝑐). Since 𝑝 |𝐶 is injective, we
obtain 𝑐 = 𝑑. Since 𝑓 (𝑐) = 𝑑′, this yields that 𝑓 (𝑑) = 𝑑′. It follows that 𝑓 (𝐷) ⊂ 𝐷′. We
now have a commutative diagram

𝐷 𝐷′

𝑝(𝐷) = 𝑝′(𝐷′)
𝑝 |𝐷

𝑓 |𝐷

𝑝′ |𝐷′

where every set is open. Since 𝑝 |𝐷 = (𝑝′|𝐷′) ◦ 𝑓 |𝐷 and 𝑝 |𝐷 and 𝑝′|𝐷′ are homeomorphisms, the
function 𝑓 |𝐷 : 𝐷 → 𝐷′ is also a homeomorphism. □

Lemma 3.3.3. Let 𝑋 be a topological space, and let (𝐸, 𝑝) be an étale space over 𝑋 .

(a) Let𝑈 be an open subset of 𝑋 , and let 𝑠 : 𝑈 → 𝐸 be a continuous function such that

𝐸

𝑈 𝑋

𝑝
𝑠 (3.2)

commutes. Then 𝑠 is injective and is a local homeomorphism.
(b) Let 𝑥 ∈ 𝑋 and assume that 𝑎 ∈ 𝑝−1({𝑥}). There exists an open subset 𝑉 of 𝑋 and a

continuous function 𝑡 : 𝑉 → 𝐸 such that 𝑥 ∈ 𝑉 , the diagram

𝐸

𝑉 𝑋

𝑝
𝑡 (3.3)

commutes, and 𝑡 (𝑥) = 𝑎. The set 𝑝−1({𝑥}) is a discrete subset of 𝐸 .
(c) Let 𝑥 ∈ 𝑋 , and Let 𝑈1 and 𝑈2 be open subsets of 𝑋 such that 𝑥 ∈ 𝑈1 and 𝑥 ∈ 𝑈2.

Let 𝑠1 : 𝑈1 → 𝐸 and 𝑠2 : 𝑈2 → 𝐸 be continuous functions such that

𝐸

𝑈1 𝑋

𝑝
𝑠1 and

𝐸

𝑈2 𝑋

𝑝
𝑠2 (3.4)

commute. If 𝑠1(𝑥) = 𝑠2(𝑥), then there exists an open subset𝑊 of 𝑋 such that 𝑥 ∈ 𝑊 ⊂ 𝑈1∩𝑈2
and 𝑠1(𝑦) = 𝑠2(𝑦) for 𝑦 ∈ 𝑊 .

Proof. (a) Since 𝑝(𝑠(𝑥)) = 𝑥 for 𝑥 ∈ 𝑈, the function 𝑠 is injective. Let 𝑥 ∈ 𝑈, and define 𝑎 = 𝑠(𝑥).
Since 𝑝 is a local homeomorphism, there exists an open subset 𝐶 of 𝐸 and an open subset 𝑉 of 𝑋
such that 𝑎 ∈ 𝐶, 𝑝(𝐶) = 𝑉 , and 𝑖 = 𝑝 |𝐶 : 𝐶 → 𝑉 is a homeomorphism. Also, since 𝑠 is continuous
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at 𝑥, there exists an open subset𝑊 of 𝑈 such that 𝑥 ∈ 𝑊 and 𝑠(𝑊) ⊂ 𝐶. Since 𝑠(𝑊) ⊂ 𝐶, we see
that𝑊 = 𝑖(𝑠(𝑊)) ⊂ 𝑖(𝐶) = 𝑉 ; since 𝑖−1 is a homeomorphism, the set 𝑠(𝑊) = 𝑖−1(𝑊) is open. We
have the commutative diagram

𝑠(𝑊) 𝐶

𝑊 𝑉

≀𝑖𝑠 ≀

We now see that 𝑠 : 𝑊 → 𝑠(𝑊) is (𝑖 |𝑊 )−1 : 𝑊 → 𝑠(𝑊) and is thus a homeomorphism.

𝑎 = 𝑠(𝑥)

𝑠(𝑊)

𝐶

𝑥 = 𝑝(𝑎) 𝑠𝑝

𝑊

𝑋

𝐸

(b) We have 𝑝(𝑎) = 𝑥. Since 𝑝 is a local homeomorphism, there exists an open subset 𝐶 of 𝐸
and an open subset 𝑉 of 𝑋 such that 𝑎 ∈ 𝐶, 𝑝(𝐶) = 𝑉 , and 𝑝 |𝐶 : 𝐶 → 𝑉 is a homeomorphism.
Define 𝑡 : 𝑉 → 𝐸 by 𝑡 (𝑦) = (𝑝 |𝐶)−1(𝑦) for 𝑦 ∈ 𝑉 . Then (3.3) commutes, and 𝑡 (𝑥) = 𝑎. To prove
that 𝑝−1({𝑥}) is a discrete subset of 𝐸 , since 𝑎 is an arbitrary element of 𝑝−1({𝑥}), it will suffice
to prove that the intersection of 𝑝−1({𝑥}) with the open set 𝐶 is {𝑎}. Let 𝑏 ∈ 𝐶 ∩ 𝑝−1({𝑥}).
Then 𝑝(𝑏) = 𝑥 = 𝑝(𝑎). Since 𝑝 |𝐶 : 𝐶 → 𝑉 is a bĳection, we have 𝑎 = 𝑏.

(c) Let 𝑎 = 𝑠1(𝑥) = 𝑠2(𝑥); then 𝑎 ∈ 𝐸 and 𝑝(𝑎) = 𝑥. Since 𝑝 is a local homeomorphism,
there exists an open subset 𝐶 of 𝐸 and an open subset 𝑉 of 𝑋 such that 𝑎 ∈ 𝐶, 𝑝(𝐶) = 𝑉 , 𝑥 ∈ 𝑉 ,
and 𝑝 |𝐶 : 𝐶 → 𝑉 is a homeomorphism. Since 𝑠1 and 𝑠2 are continuous at 𝑥, there exists an open
subset𝑊 of 𝑋 such that 𝑥 ∈ 𝑊 ,𝑊 ⊂ 𝑈1 ∩𝑈2 ∩𝐶, 𝑠1(𝑊) ⊂ 𝐶, and 𝑠2(𝑊) ⊂ 𝐶. Diagrammatically,
for 𝑖 = 1 and 𝑖 = 2, we have

𝐶

𝑊 𝑉

𝑝≀
𝑠𝑖

Now let 𝑦 ∈ 𝑊 . Then 𝑝(𝑠1(𝑦)) = 𝑦 = 𝑝(𝑠2(𝑦)); since 𝑠1(𝑦), 𝑠2(𝑦) ∈ 𝐶, and since 𝑝 |𝐶 : 𝐶 → 𝑉 is
a homeomorphism, we must have 𝑠1(𝑦) = 𝑠2(𝑦). □
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From étalé spaces to sheaves
A sheaf is associated to every étalé space as follows. Let 𝑋 be a topological space, and Let 𝑝 : 𝐸 →
𝑋 be a étalé space over 𝑋 . For each open subset𝑈 of 𝑋 , we let Γ(𝑈, 𝐸) be the set of all continuous
maps 𝑠 : 𝑈 → 𝐸 such that

𝐸

𝑈 𝑋

𝑝
𝑠

commutes. If𝑈 and 𝑉 are open subsets of 𝑋 such that 𝑉 ⊂ 𝑈, then we define

Γ(𝑈, 𝐸) Γ(𝑉, 𝐸)𝜌𝑈,𝑉

by 𝜌𝑈,𝑉 (𝑠) = 𝑠 |𝑉 for 𝑠 ∈ Γ(𝑈, 𝐸).

Lemma 3.3.4. Let 𝑋 be a topological space, and Let 𝑝 : 𝐸 → 𝑋 be a étalé space over 𝑋 .
Then Γ(·, 𝐸) is a sheaf on 𝑋 with values in Set.

Proof. It is easy to see that Γ(·, 𝐸) is a presheaf. To verify the gluing condition (G), let 𝑈 be an
open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an open cover of 𝑈, and let {𝑠𝑖}𝑖∈𝐼 be such that 𝑠𝑖 ∈ Γ(𝑈𝑖, 𝐸)
for 𝑖 ∈ 𝐼 and 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

(𝑠𝑖) = 𝜌𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑠 𝑗 ) for all 𝑖, 𝑗 ∈ 𝐼. Define 𝑠 : 𝑈 → 𝐸 by 𝑠(𝑥) = 𝑠𝑖 (𝑥)

if 𝑖 ∈ 𝐼 is such that 𝑥 ∈ 𝑈𝑖; since {𝑠𝑖}𝑖∈𝐼 is a cover of𝑈 there is at least one such 𝑖. We claim that 𝑠
is well-defined. Assume that 𝑖, 𝑗 ∈ 𝐼 are such that 𝑠 ∈ 𝑈𝑖 and 𝑠 ∈ 𝑈 𝑗 . As a consequence of our
assumption, 𝑠𝑖 |𝑈𝑖∩𝑈 𝑗

= 𝑠 𝑗 |𝑈𝑖∩𝑈 𝑗
. Hence, 𝑠𝑖 (𝑥) = 𝑠 𝑗 (𝑥), and 𝑠 is well-defined. If 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑈𝑖,

then (𝑝 ◦ 𝑠) (𝑥) = 𝜌(𝑠𝑖 (𝑥)) = 𝑥; also, we see that if 𝑖 ∈ 𝐼, then 𝜌𝑈,𝑈𝑖
(𝑠) = 𝑠 |𝑈𝑖

= 𝑠𝑖 which proves
that 𝑠 is continuous. We conclude that 𝑠 ∈ Γ(𝑈, 𝐸) and the gluing condition (G) holds. To verify
the locality condition (L), let 𝑈 be an open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an open cover of 𝑈, and
let 𝑠, 𝑠′ ∈ Γ(𝑈, 𝐸) be such that 𝜌𝑈,𝑈𝑖

(𝑠) = 𝜌𝑈,𝑈𝑖
(𝑠′) for all 𝑖 ∈ 𝐼. Then 𝑠 |𝑈𝑖

= 𝑠′|𝑈𝑖
for all 𝑖 ∈ 𝐼.

Since {𝑈𝑖}𝑖∈𝐼 is a cover of𝑈, we obtain 𝑠 = 𝑠′. □

Lemma 3.3.5. Let 𝑋 be a topological space, and let (𝐸, 𝑝) be an étalé space over 𝑋 . Let 𝑥 ∈ 𝑋 .
If 𝑈 is an open subset of 𝑋 such that 𝑥 ∈ 𝑋 , then define Γ(𝑈, 𝐸) → 𝑝−1({𝑥}) by 𝑠 ↦→ 𝑠(𝑥)
for 𝑠 ∈ Γ(𝑈, 𝐸). Then, with these morphisms, 𝑝−1({𝑥}) is a direct limit of {Γ(𝑈, 𝐸)}𝑥∈𝑈⊂𝑋 . The
canonical isomorphism

Γ(·, 𝐸)𝑥 = lim→
𝑥∈𝑈

Γ(𝑈, 𝐸) 𝑝−1({𝑥})∼ (3.5)

sends 𝑠𝑥 = [𝑠] to 𝑠(𝑥) for 𝑠 ∈ Γ(𝑈, 𝐸) where 𝑈 is an open subset of 𝑋 such that 𝑥 ∈ 𝑈

(here lim
→

Γ(𝑈, 𝐸) is constructed as in the proof of Theorem 1.3.2).

Proof. Assume first that 𝑝−1({𝑥}) is empty. In this case, it is easy to see that Γ(𝑈, 𝐸) = ∅ for
all open subsets 𝑈 of 𝑋 such that 𝑥 ∈ 𝑈. It follows that Γ(·, 𝐸)𝑥 = ∅ = 𝑝−1({𝑥}). Now assume
that 𝑝−1({𝑥}) is non-empty. For𝑈 an open subset of 𝑋 such that 𝑥 ∈ 𝑈, define

Γ(𝑈, 𝐸) 𝑝−1({𝑥})
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by sending 𝑠 ∈ Γ(𝑈, 𝐸) to 𝑠(𝑥). It is clear that if𝑈 and𝑉 are open subsets of 𝑋 such that 𝑥 ∈ 𝑉 ⊂ 𝑈,
then diagram

Γ(𝑈, 𝐸) Γ(𝑉, 𝐸)

𝑝−1({𝑥})

commutes. We see that the conditions (a) and (b) from Lemma 1.3.3 follow from (b) and (c) of
Lemma 3.3.3, respectively; Lemma 1.3.3 now implies the desired result. □

Lemma 3.3.6. Let 𝑋 be a topological space, and let 𝑓 : (𝐸, 𝑝) → (𝐸′, 𝑝′) be a morphism of étalé
spaces over 𝑋 . Define

Γ(·, 𝐸)
Γ 𝑓
−→ Γ(·, 𝐸′)

by letting

Γ 𝑓 =

{
Γ(𝑈, 𝐸)

(Γ 𝑓 ) (𝑈)
−→ Γ(𝑈, 𝐸′)

}
𝑈 ⊂ 𝑋 open

where (Γ 𝑓 ) (𝑈) (𝑠) = 𝑓 (𝑈)◦𝑠 for𝑈 an open subset of 𝑋 and 𝑠 ∈ Γ(𝑈, 𝐸). Then Γ 𝑓 is a well-defined
morphism of sheaves.

Proof. The proof of this lemma is straightforward and is left to the reader. □

From presheaves to étalé spaces
Let 𝑋 be a topological space, and let F be a presheaf on 𝑋 with values in Set. We will attach an
étalé space to F. Define

𝐿F =
⊔
𝑥∈𝑋

F𝑥

be the disjoint union of all the stalks of F. Define

𝐿F 𝑋
𝑝=𝑝F

by setting 𝑝(𝑦) = 𝑥 for 𝑥 ∈ 𝑋 and 𝑦 ∈ F𝑥 , so that 𝑝 is the natural projection. We will define a
topology on 𝐿F as follows. Let𝑈 be an open subset of 𝑋 , and let 𝑠 ∈ F(𝑈). We define a function

𝑈 𝐿F
𝑠

by setting 𝑠(𝑥) = 𝑠𝑥 ∈ F𝑥 for 𝑥 ∈ 𝑈. Evidently, 𝑠(𝑈) is a subset of 𝐿F, and the following diagram
commutes

𝐿F

𝑈 𝑋

𝑝
𝑠

The following shows that the subsets 𝑠(𝑈) of 𝑋 define a topology with respect to which (𝐿F, 𝑝) is
an étalé space.
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Theorem 3.3.7. Let 𝑋 be a topological space, and let F be a presheaf on 𝑋 with values in Set.
Let 𝐵 be the collection of sets 𝑠(𝑈) as 𝑈 ranges over the open subsets of 𝑋 and 𝑠 ranges over the
elements of F(𝑈). Then 𝐵 is the basis for a topology on 𝐿F and:

(a) If 𝑈 is an open subset of 𝑋 and 𝑠 ∈ F(𝑈), then the function 𝑠 : 𝑈 → 𝑠(𝑈) is a homeomor-
phism.

(b) The pair (𝐿F, 𝑝) is an étalé space.

Proof. To prove that 𝐵 is the basis for a topology we have to prove two statements: (1) 𝐵 covers
𝑋; (2) if 𝑠(𝑈), 𝑡 (𝑉) are in 𝐵, where 𝑈 and 𝑉 are open subsets of 𝑋 , 𝑠 ∈ F(𝑈), and 𝑡 ∈ F(𝑉),
and 𝑒 ∈ 𝑠(𝑈) ∩ 𝑡 (𝑉), then there exists an open subset𝑊 of 𝑋 and 𝑟 ∈ F(𝑊) such that

𝑒 ∈ 𝑟 (𝑊) ⊂ 𝑠(𝑈) ∩ 𝑡 (𝑉).

The statement (1) follows immediately from (a) of Lemma 2.3.1. To prove (2), let 𝑈 and 𝑉 be
open subsets of 𝑋 , let 𝑠 ∈ F(𝑈) and 𝑡 ∈ F(𝑉), and assume that 𝑒 is in 𝑠(𝑈) ∩ 𝑡 (𝑉). Taking
into account the involved definitions, it follows that there exists 𝑥 ∈ 𝑈 ∩ 𝑉 such that 𝑒 = 𝑠𝑥 = 𝑡𝑥 .
Since 𝑠𝑥 = 𝑡𝑥 , there exists an open subset𝑊 of 𝑋 such that 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩𝑉 and 𝜌𝑈,𝑊 (𝑠) = 𝜌𝑉,𝑊 (𝑡).
We define 𝑟 = 𝜌𝑈,𝑊 (𝑠) = 𝜌𝑉,𝑊 (𝑡). We now claim that 𝑒 ∈ 𝑟 (𝑊) and

𝑟 (𝑊) ⊂ 𝑠(𝑈) ∩ 𝑡 (𝑉). (3.6)

Since 𝑟 = 𝜌𝑈,𝑊 (𝑠), the elements 𝑟 and 𝑠 define the same germ in F𝑥 , i.e., 𝑟𝑥 = 𝑠𝑥 . Since 𝑠𝑥 = 𝑒,
we have 𝑟𝑥 = 𝑒; this implies that 𝑒 ∈ 𝑟 (𝑊). Next, let 𝑎 ∈ 𝑟 (𝑊). Let 𝑦 ∈ 𝑊 be such that 𝑟𝑦 = 𝑎.
Since 𝑦 ∈ 𝑊 ⊂ 𝑈 ∩𝑉 and 𝑟 = 𝜌𝑈,𝑊 (𝑠) = 𝜌𝑉,𝑊 (𝑡), the elements 𝑟, 𝑠, and 𝑡 all define the same germ
in F𝑦, i.e., 𝑟𝑦 = 𝑠𝑦 = 𝑡𝑦. Thus, 𝑎 = 𝑠𝑦 = 𝑡𝑦 ∈ 𝑠(𝑈) ∩ 𝑡 (𝑉). This proves (3.6).

(a) Let 𝑈 be an open subset of 𝑋 , and let 𝑠 ∈ F(𝑈). To prove that 𝑠 : 𝑈 → 𝑠(𝑈) is a
homeomorphism it will suffice to prove that this function is a continuous and open bĳection. It is
easy to see that our function is a bĳection. To see it is continuous, let 𝑉 be an open subset of 𝑋 ,
and let 𝑡 ∈ F(𝑉); to prove that 𝑠 is continuous it will suffice to prove that 𝑠−1(𝑡 (𝑉)) is open. Now

𝑠−1(𝑡 (𝑉)) = {𝑥 ∈ 𝑈 : 𝑠(𝑥) ∈ 𝑡 (𝑉)}
= {𝑥 ∈ 𝑈 : 𝑠𝑥 ∈ 𝑡 (𝑉)}
= {𝑥 ∈ 𝑈 : 𝑥 ∈ 𝑉 and 𝑠𝑥 = 𝑡𝑥}
= {𝑥 ∈ 𝑈 ∩𝑉 : 𝑠𝑥 = 𝑡𝑥}.

Let 𝑥 ∈ 𝑠−1(𝑡 (𝑉)) = {𝑥 ∈ 𝑈 ∩ 𝑉 : 𝑠𝑥 = 𝑡𝑥}. By (b) of Lemma 2.3.1 there exists an open subset 𝑊
of 𝑋 such that 𝑥 ∈ 𝑊 ⊂ 𝑈 ∩ 𝑉 and 𝑠𝑦 = 𝑡𝑦 for 𝑦 ∈ 𝑊 . It follows 𝑥 ∈ 𝑊 ⊂ 𝑠−1(𝑡 (𝑉)), proving
that 𝑠−1(𝑡 (𝑉)) is open. Next, let 𝑉 be an open subset of 𝑈; we need to prove that 𝑠(𝑉) is open.
Define 𝑡 = 𝜌𝑈,𝑉 (𝑠) ∈ F(𝑉). Let 𝑥 ∈ 𝑉 . Then 𝑡 (𝑥) = 𝑡𝑥 = 𝑠𝑥 = 𝑠(𝑥). This implies that 𝑠(𝑉) = 𝑡 (𝑉).
Since 𝑡 (𝑉) is in 𝐵, the set 𝑠(𝑉) = 𝑡 (𝑉) is open.

(b) To prove that 𝑝 is a local homeomorphism, let 𝑒 ∈ 𝐿F. Then 𝑒 ∈ F𝑥 for some 𝑥 ∈ 𝑋 . By (a)
of Lemma 2.3.1, there exists an open subset 𝑊 of 𝑋 and 𝑠 ∈ F(𝑊) such that 𝑥 ∈ 𝑊 and 𝑠𝑥 = 𝑒.
There is a commutative diagram

𝑠(𝑊)

𝑊 𝑊

𝑝 |𝑠 (𝑊 )
𝑠

id
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Since 𝑠 : 𝑊 → 𝑠(𝑊) is a homeomorphism by (a) and id : 𝑊 → 𝑊 is a homeomorphism, so
is 𝑝 |𝑠(𝑊) : 𝑠(𝑊) → 𝑊 . □

Lemma 3.3.8. Let 𝑋 be a topological space. Let F and G be presheaves on 𝑋 with values in Set.
Let 𝑓 : F → G be a morphism of presheaves. Define

(𝐿F, 𝑝F)
𝐿 𝑓
−→ (𝐿G, 𝑝G)

by letting 𝐿 𝑓 be the function 𝑓𝑥 on each stalk F𝑥 for 𝑥 ∈ 𝑋 (see Section 2.4). Then 𝐿 𝑓 is a
well-defined morphism of étalé spaces.

Proof. We need to prove that 𝐿 𝑓 is continuous. By Lemma 3.3.2 it suffices to prove that 𝐿 𝑓 is
open. Let 𝑈 be an open subset of 𝑋 , and let 𝑠 ∈ F(𝑈); to prove that 𝐿 𝑓 is open, it will suffice to
prove that (𝐿 𝑓 ) (𝑠(𝑈)) is open. Now

(𝐿 𝑓 ) (𝑠(𝑈)) = { 𝑓𝑥 (𝑠𝑥) : 𝑥 ∈ 𝑈}.

Let 𝑥 ∈ 𝑈. We have the following commutative diagram:

F(𝑈) G(𝑈)

F𝑥 G𝑥

𝑓 (𝑈)

𝑓𝑥

Therefore, 𝑓𝑥 (𝑠𝑥) = ( 𝑓 (𝑈) (𝑠))𝑥 . It follows that

(𝐿 𝑓 ) (𝑠(𝑈)) = { 𝑓𝑥 (𝑠𝑥) : 𝑥 ∈ 𝑈} = �𝑓 (𝑈) (𝑠) (𝑈).
Hence, by the definition of the topology on 𝐿G, the set (𝐿 𝑓 ) (𝑠(𝑈)) is open. □

From étalé spaces to sheaves to étalé spaces
Theorem 3.3.9. Let 𝑋 be a topological space, and let (𝐸, 𝑝) be an étalé space over 𝑋 . Let F =

Γ(·, 𝐸). Recall from Lemma 3.3.5 that, for each 𝑥 ∈ 𝑋 , there exists a canonical bĳection

F𝑥 = Γ(·, 𝐸)𝑥 = lim→
𝑥∈𝑈

Γ(𝑈, 𝐸) ∼−→ 𝑝−1({𝑥})

that sends an equivalence class 𝑠𝑥 = [𝑠] to 𝑠(𝑥) for 𝑠 ∈ Γ(𝑈, 𝐸), where 𝑈 is an open subset of 𝑋
such that 𝑥 ∈ 𝑈. The induced bĳection

𝑓 : 𝐿Γ𝐸 = 𝐿F =
⊔
𝑥∈𝑋

F𝑥
∼−→ 𝐸 =

⊔
𝑥∈𝑋

𝑝−1({𝑥})

is an isomorphism between the étalé spaces (𝐿Γ𝐸, 𝑝F) = (𝐿F, 𝑝F) and (𝐸, 𝑝) over 𝑋 .
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Proof. It is clear that the diagram

𝐿F 𝐸

𝑋

𝑓

𝑝F

𝑝

commutes. Since 𝑓 is a bĳection, by Lemma 3.3.1, to prove that 𝑓 is an isomorphism of étalé
spaces, it will suffice to prove that 𝑓 is a local homeomorphism; for this, by Lemma 3.3.2, it will
suffice to verify that 𝑓 is open. Let𝑈 be an open subset of 𝑋 , and let 𝑠 ∈ Γ(𝑈, 𝐸) = F(𝑈); by the
definition of the topology on 𝐿F, to prove that 𝑓 is open, it is sufficient to check that 𝑓 (𝑠(𝑈)) is
open. Now

𝑓 (𝑠(𝑈)) = 𝑓 ({𝑠𝑥 : 𝑥 ∈ 𝑈})
= {𝑠(𝑥) : 𝑥 ∈ 𝑈}
= 𝑠(𝑈).

This is an open set by Lemma 3.3.3 and Lemma 3.3.1. □

From presheaves to étalé spaces to sheaves
Lemma 3.3.10. Let 𝑋 be a topological space, and let F be a presheaf on 𝑋 with values in Set.
For each open subset𝑈 of 𝑋 , define

F(𝑈)
𝑛F (𝑈)
−→ (Γ𝐿F) (𝑈)

by 𝑛F (𝑈) (𝑠) = 𝑠 for 𝑠 ∈ F(𝑈). Then the collection of functions{
F(𝑈)

𝑛F (𝑈)
−→ (Γ𝐿F) (𝑈)

}
𝑈 ⊂ 𝑋 open

defines a morphism of presheaves
F

𝑛F−→ Γ𝐿F.

Proof. We first note that the maps 𝑛F (𝑈) for 𝑈 an open subset of 𝑋 are well-defined: in The-
orem 3.3.7 we proved that if 𝑠 ∈ F(𝑈), then 𝑠 : 𝑈 → 𝐿F is a homeomorphism and is thus
continuous. Next, let𝑈 and 𝑉 be open subsets of 𝑋 with 𝑉 ⊂ 𝑈. To see that

F(𝑈) (Γ𝐿F) (𝑈)

F(𝑉) (Γ𝐿F) (𝑉)
(3.7)

commutes, let 𝑠 ∈ F(𝑈) and 𝑥 ∈ 𝑉 . Then image of 𝑠 under the composition

F(𝑈) −→ (Γ𝐿F) (𝑈) −→ (Γ𝐿F) (𝑉)
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is the function 𝑉 → 𝐿F that sends 𝑥 to 𝑠𝑥 ∈ 𝐿F. The image of 𝑠 under the composition

F(𝑈) −→ F(𝑉) −→ (Γ𝐿F) (𝑉)

is the function that sends 𝑥 to (𝜌𝑈,𝑉 𝑠)𝑥 ∈ 𝐿F. Since the diagram

F(𝑈) F(𝑉)

F𝑥

commutes, we have 𝑠𝑥 = (𝜌𝑈,𝑉 𝑠)𝑥 . Hence, (3.7) commutes. □

Lemma 3.3.11. Let 𝑋 be a topological space. Let F and G be presheaves on 𝑋 with values in Set.
Let 𝑓 : F → G be a morphism of presheaves. The diagram of morphisms of presheaves

F G

Γ𝐿F Γ𝐿G

𝑓

𝑛F 𝑛G

Γ𝐿 𝑓

(3.8)

commutes.

Proof. Let𝑈 be an open subset of 𝑋 and let 𝑠 ∈ F(𝑈). We need to prove that the elements

((Γ𝐿 𝑓 ) (𝑈)) (𝑛F (𝑈) (𝑠)) and 𝑛F (𝑈) ( 𝑓 (𝑈) (𝑠))

of Γ𝐿G are equal. Both of these elements are functions from𝑈 to 𝐿G. Let 𝑥 ∈ 𝑈. Then(
((Γ𝐿 𝑓 ) (𝑈)) (𝑛F (𝑈) (𝑠))

)
(𝑥) =

(
((Γ𝐿 𝑓 ) (𝑈)) (𝑠)

)
(𝑥)

=

(
(𝐿 𝑓 ) ◦ 𝑠

)
(𝑥)

= (𝐿 𝑓 ) (𝑠(𝑥))
= (𝐿 𝑓 ) (𝑠𝑥)
= 𝑓𝑥 (𝑠𝑥).

And: (
𝑛G (𝑈) ( 𝑓 (𝑈) (𝑠))

)
(𝑥) = �𝑓 (𝑈) (𝑠) (𝑥)

=
(
𝑓 (𝑈) (𝑠)

)
𝑥
.

Since the diagram

F(𝑈) G(𝑈)

F𝑥 G𝑥

𝑓 (𝑈)

𝑓𝑥

commutes, we have 𝑓𝑥 (𝑠𝑥) =
(
𝑓 (𝑈) (𝑠)

)
𝑥
. This is the desired result. □
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Lemma 3.3.12. Let 𝑋 be a topological space, and let F be a presheaf on 𝑋 with values in Set.
The morphism

F
𝑛F−→ Γ𝐿F

is an isomorphism of presheaves if and only if F is a sheaf.

Proof. Assume that 𝑛F is an isomorphism of presheaves. By Lemma 3.3.4, Γ𝐿F is a sheaf.
Lemma 3.1.3 now implies that F is a sheaf.

Assume that F is a sheaf. To show that 𝑛F is an isomorphism it will suffice to prove that 𝑛F (𝑈)
is an isomorphism, i.e., bĳection, for every open subset 𝑈 of 𝑋 (see Lemma 2.4.1). Let 𝑈 be an
open subset of 𝑋 . We first prove that 𝑛𝐹 (𝑈) : F(𝑈) → (Γ𝐿F) (𝑈) is injective. Let 𝑠, 𝑠′ ∈ F(𝑈)
and assume that 𝑛F (𝑈) (𝑠) = 𝑛F (𝑈) (𝑠′). Then 𝑠𝑥 = 𝑠′𝑥 for all 𝑥 ∈ 𝑈. By Proposition 3.1.1 we
have 𝑠 = 𝑠′, and 𝑛F (𝑈) is injective.

To prove that 𝑛F (𝑈) is surjective, let 𝑡 ∈ (Γ𝐿F) (𝑈). Then, by defintion, 𝑡 : 𝑈 → 𝐿F is a
continuous function such that

𝐿F

𝑈 𝑋

𝑝F
𝑡

commutes. By Lemma 3.3.3, 𝑡 is an injective local homeomorphism. By Lemma 3.3.1, 𝑡 is open.
It follows that the set 𝑡 (𝑈) is an open subset of 𝐿F. By the definition of the topology on 𝐿F, for
each 𝑥 ∈ 𝑈, there exists an open subset 𝑈𝑥 of 𝑈 and 𝑠𝑥 ∈ F(𝑈𝑥) such that 𝑥 ∈ 𝑈𝑥 , 𝑡 (𝑥) ∈ 𝑠𝑥 (𝑈𝑥),
and 𝑠𝑥 (𝑈𝑥) ⊂ 𝑡 (𝑈). We consider the open cover {𝑈𝑥}𝑥∈𝑈 of 𝑈 and the collection {𝑠𝑥}𝑥∈𝑈 .
Let 𝑥1, 𝑥2 ∈ 𝑈; we claim that

𝜌𝑈𝑥1 ,𝑈𝑥1∩𝑈𝑥2
(𝑠𝑥1) = 𝜌𝑈𝑥2 ,𝑈𝑥1∩𝑈𝑥2

(𝑠𝑥2). (3.9)

To see this, let
𝑠1 = 𝜌𝑈𝑥1 ,𝑈𝑥1∩𝑈𝑥2

(𝑠𝑥1), 𝑠2 = 𝜌𝑈𝑥2 ,𝑈𝑥1∩𝑈𝑥2
(𝑠𝑥1).

Let 𝑧 ∈ 𝑈𝑥1 ∩𝑈𝑥2 . Then 𝑠1 and 𝑠𝑥1 define the same germ in F𝑧, and 𝑠2 and 𝑠𝑥2 define the same germ
in F𝑧. That is,

𝑠1,𝑧 = (𝑠𝑥1)𝑧, 𝑠2,𝑧 = (𝑠𝑥2)𝑧 .

We also have, by construction,
𝑠𝑥1 (𝑈𝑥1), 𝑠𝑥2 (𝑈𝑥2) ⊂ 𝑡 (𝑈).

Considering the definition of 𝐿F, this implies that

𝑠𝑥1 (𝑧) = 𝑡 (𝑧) = 𝑠𝑥2 (𝑧)

so that (𝑠𝑥1)𝑧 = (𝑠𝑥2)𝑧. By Lemma 3.1.1 we conclude that 𝑠1 = 𝑠2, as claimed. Since F is a sheaf,
by the gluing condition (G), there exists 𝑟 ∈ F(𝑈) such that 𝜌𝑈,𝑈𝑥

(𝑟) = 𝑠𝑥 for all 𝑥 ∈ 𝑈. Let 𝑥 ∈ 𝑈.
Then 𝑡 (𝑥) = (𝑠𝑥)𝑥 = 𝑟𝑥 . This implies that 𝑛F (𝑈) (𝑟) = 𝑡, proving that 𝑛F (𝑈) is surjective. □

We can use Lemma 3.3.12 to again prove that the constant presheaf is not a sheaf if 𝐴 has at
least two elements. Let 𝑋 be a topological space and let 𝐴 be a set. By definition, the constant
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presheaf F = 𝐴𝑋 is such that F(𝑈) = 𝐴 for all open subsets 𝑈 of 𝑋 . Thus, F(∅) = 𝐴. We also
have

(Γ𝐿F) (∅) = Γ(∅, 𝐿F) = {∅}.

We see that if 𝐴 has at least two elements, then the function

F(∅) = 𝐴
𝑛F (∅)
−→ (Γ𝐿F) (∅) = {∅}

cannot be a bĳection.

Sheafification of presheaves
The Γ𝐿 construction will allow us to canonically associate a sheaf to every presheaf. For this, we
need the following lemma.

Lemma 3.3.13. Let 𝑋 be a topological space, and let F be a presheaf on 𝑋 with values in Set.
If 𝑥 ∈ 𝑋 , then the induced morphism

F𝑥
(𝑛F)𝑥−→ (Γ𝐿F)𝑥

is an isomorphism.

Proof. Let 𝑥 ∈ 𝑋 . The function (𝑛F)𝑥 is such that

((𝑛F)𝑥) (𝑠𝑥) = (((𝑛F (𝑈)) (𝑠))𝑥 = (𝑠)𝑥

for 𝑠 ∈ F(𝑈) where𝑈 is an open subset of 𝑋 such that 𝑥 ∈ 𝑈 (see the remark after Lemma 1.3.4).
Next, we recall the function

(Γ𝐿F)𝑥
𝑓

−→ 𝑝−1
F ({𝑥}) = F𝑥

from Lemma 3.3.5. This function is a bĳection, and satisfies

𝑓 ((𝑠)𝑥) = (𝑠) (𝑥) = 𝑠𝑥

for 𝑠 ∈ F(𝑈), where𝑈 is an open subset of 𝑋 such that 𝑥 ∈ 𝑈. Since 𝑓 is a bĳection, to prove the
lemma it will suffice to prove that

𝑓 ◦ (𝑛F)𝑥 = idF𝑥
.

Let𝑈 be an open subset of 𝑋 such that 𝑥 ∈ 𝑈. Let 𝑠 ∈ F(𝑈). Then

( 𝑓 ◦ (𝑛F)𝑥) (𝑠𝑥) = 𝑓 ((𝑛F)𝑥 (𝑠𝑥))
= 𝑓 ((𝑠)𝑥)
= 𝑠𝑥

= idF𝑥
(𝑠𝑥) .

Since every element ofF𝑥 has the form 𝑠𝑥 for some open subset𝑈 of 𝑋 such that 𝑥 ∈ 𝑈 and 𝑠 ∈ F(𝑈),
we conclude that 𝑓 ◦ (𝑛F)𝑥 = idF𝑥

. □
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Theorem 3.3.14 (Sheafification). Let 𝑋 be a topological space, and let F be a presheaf on 𝑋 with
values in Set. Let G be a sheaf on 𝑋 with values in Set. Assume that there exists a morphism

F
𝑓

−→ G (3.10)

of presheaves. Then there exists a unique morphism

Γ𝐿F
𝑔

−→ G

of sheaves such that
F Γ𝐿F

G

𝑛F

𝑓
𝑔 (3.11)

commutes.

Proof. By Lemma 3.3.11, we have the following commutative diagram of presheaves:

F Γ𝐿F

G Γ𝐿G

𝑓

𝑛F

Γ𝐿 𝑓

𝑛G

By Lemma 3.3.12, the morphism 𝑛G is an isomorphism of sheaves. It follows that if 𝑔 : Γ𝐿F → G

is 𝑛−1
G

◦ Γ𝐿 𝑓 , then (3.11) commutes. This proves the existence of the desired 𝑔. To prove the
uniqueness of 𝑔, assume that 𝑔, 𝑔′ : Γ𝐿F → G are two sheaf morphisms such that

F Γ𝐿F

G

𝑛F

𝑓
𝑔 and

F Γ𝐿F

G

𝑛F

𝑓
𝑔′

commute. Let 𝑥 ∈ 𝑋 . Then 𝑔𝑥 ◦ (𝑛F)𝑥 = 𝑓𝑥 . By Lemma 3.3.13, the function (𝑛F)𝑥 is an
isomorphism; hence, we have 𝑔𝑥 = 𝑓𝑥 ◦ (𝑛F)−1

𝑥 . Similarly, 𝑔′𝑥 = 𝑓𝑥 ◦ (𝑛F)−1
𝑥 , so that 𝑔𝑥 = 𝑔′𝑥 . By

Corollary 3.1.2 we now have 𝑔 = 𝑔′. □

If the notation is as in Theorem 3.3.14, then we refer to Γ𝐿F as the sheafification of F. We
see that if F is a sheaf, then Γ𝐿F is isomorphic to F via the isomorphism 𝑛F : F → Γ𝐿F (see
Lemma 3.3.12).

The constant sheaf
We consider the sheafication of the constant presheaf. Let 𝑋 be a topological space, and let 𝐴 be a
set. The constant presheaf F = 𝐴𝑋 is defined by F(𝑈) = 𝐴 for all open subsets𝑈 of 𝑋 , and all the
restriction maps for this presheaf are the identity function id𝐴 : 𝐴 → 𝐴. We will calculate Γ𝐿F.
First of all, we have:

𝐿F =
⊔
𝑥∈𝑋

F𝑥 =
⊔
𝑥∈𝑋

𝐴.
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In fact, we may naturally identify this with 𝑋 × 𝐴:

𝐿F � 𝑋 × 𝐴.

We have
𝑝F (𝑥, 𝑎) = 𝑥

for (𝑥, 𝑎) ∈ 𝐿F � 𝑋 × 𝐴. The topology on 𝐿F is defined to be the topology that has as base
the sets 𝑠(𝑈) where 𝑈 is an open subset of 𝑋 and 𝑠 ∈ F(𝑈) = 𝐴; here, 𝑠 : 𝑈 → 𝐿F is defined
by 𝑠(𝑥) = 𝑠𝑥 ∈ F𝑥 for 𝑥 ∈ 𝑈, and

𝑠(𝑈) = {𝑠𝑥 : 𝑥 ∈ 𝑈} = 𝑈 × {𝑠}

because the germ 𝑠𝑥 in F𝑥 = 𝐴 is 𝑠 (see the discussion about the stalks of the constant presheaf
on p. 18). Let us now endow 𝐴 with the discrete topology. We see then that the topology
on 𝐿F = 𝑋 × 𝐴 is the product topology. Next, let𝑈 be an open subset of 𝑋 . We have

(Γ𝐿F) (𝑈) = Γ(𝑈, 𝐿F)
= {𝑠 : 𝑈 → 𝐿F = 𝑋 × 𝐴 : 𝑠 is continuous, (𝑝F ◦ 𝑠) (𝑥) = 𝑥, 𝑥 ∈ 𝑈}
= {𝑠 : 𝑈 → 𝐿F = 𝑋 × 𝐴 : 𝑠(𝑥) = (𝑥, 𝑟 (𝑥)), 𝑟 : 𝑈 → 𝐴 continuous}
� {𝑟 : 𝑈 → 𝐴 : 𝑟 is continuous}
= {𝑟 : 𝑈 → 𝐴 : 𝑟 is locally constant}.

We will refer to Γ𝐿𝐴𝑋 as the constant sheaf.

3.4 Abelian considerations
In this section we will show that the results of Section 3.3 still hold if we assume that the involved
presheaves, sheaves, and étalé spaces are abelian. We will not repeat the previous section; instead,
we will just provide the required additional definitions and arguments.

Abelian étalé spaces
We first develop the concept of an étalé space of abelian groups.

Proposition 3.4.1. Let 𝑋 be a topological space, and let (𝐸, 𝑝) be an étalé space over 𝑋 . Assume
that for every 𝑥 ∈ 𝑋 the set 𝑝−1({𝑥}) is an abelian group. The following are equivalent:

(a) For every open subset𝑈 of 𝑋 , the set Γ(𝑈, 𝐸) is an abelian group under pointwise addition
of functions.

(b) Define
𝐸𝜋𝐸 = {(𝑒, 𝑒′) ∈ 𝐸 × 𝐸 : 𝑝(𝑒) = 𝑝(𝑒′)}.

The map
𝑚 : 𝐸𝜋𝐸 −→ 𝐸

defined by 𝑚(𝑒, 𝑒′) = 𝑒 − 𝑒′ for (𝑒, 𝑒′) ∈ 𝐸𝜋𝐸 is continuous.
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Proof. (a) =⇒ (b). Assume that (a) holds. Let (𝑒, 𝑒′) ∈ 𝐸𝜋𝐸 ; we will prove that 𝑚 is continuous
at (𝑒, 𝑒′). Let 𝑥 = 𝑝(𝑒) = 𝑝(𝑒′). Also, let 𝑎 = 𝑒− 𝑒′. Let𝐶 be an open subset of 𝐸 such that 𝑎 ∈ 𝐶.
By (b) of Lemma 3.3.3, there exists an open subset 𝑈 of 𝑋 such that 𝑥 ∈ 𝑈 and 𝑠, 𝑠′ ∈ Γ(𝑈, 𝐸)
such that 𝑠(𝑥) = 𝑒, 𝑠(𝑥) = 𝑒′, 𝑠(𝑈) and 𝑠′(𝑈) are open in 𝐸 , and 𝑠 : 𝑈 → 𝑠(𝑈) and 𝑠′ : 𝑈 → 𝑠′(𝑈)
are homeomorphisms. Consider the composition

𝑈
(𝑠,𝑠′)
−→ 𝐸𝜋𝐸

𝑚−→ 𝐸

where (𝑠, 𝑠′) sends 𝑦 ∈ 𝑈 to (𝑠(𝑦), 𝑠′(𝑦)). This composition is 𝑠 − 𝑠′. By (a), 𝑠 − 𝑠′ is in Γ(𝑈, 𝐸),
and is hence continuous. It follows that there exists an open subset 𝑉 of 𝑋 such that 𝑥 ∈ 𝑉 ⊂ 𝑈 and

(𝑚 ◦ (𝑠, 𝑠′)) (𝑉) = 𝑚 ((𝑠, 𝑠′) (𝑉)) ⊂ 𝐶.

Now

(𝑠, 𝑠′) (𝑉) = {(𝑠(𝑦), 𝑠′(𝑦)) : 𝑦 ∈ 𝑉}
= (𝐸𝜋𝐸) ∩ (𝑠(𝑉) × 𝑠′(𝑉)).

Since 𝑠 : 𝑈 → 𝑠(𝑈) and 𝑠′ : 𝑈 → 𝑠′(𝑈) are homeomorphisms, the sets 𝑠(𝑉) and 𝑠′(𝑉) are open
in 𝐸 ; hence 𝑠(𝑉) × 𝑠′(𝑉) is open in 𝐸 × 𝐸 . It follows that (𝑠, 𝑠′) (𝑉) = (𝐸𝜋𝐸) ∩ (𝑠(𝑉) × 𝑠′(𝑉)) is
open in 𝐸𝜋𝐸 . Also, (𝑒, 𝑒′) ∈ (𝐸𝜋𝐸) ∩ (𝑠(𝑉) × 𝑠′(𝑉)). It follows that 𝑚 is continuous at (𝑒, 𝑒′).

(b) =⇒ (a). Assume that (b) holds. Let𝑈 be an open subset of 𝑋 . If𝑈 is empty, then Γ(𝑈, 𝐸)
contains exactly one element, the empty function from 𝑈 to 𝐸 (see p. 3), so that Γ(𝑈, 𝐸) is the
trivial group. Assume that𝑈 is non-empty. Let 𝑓 , 𝑔 ∈ Γ(𝑈, 𝐸); to prove that Γ(𝑈, 𝐸) is an abelian
group under pointwise addition it will suffice to prove that 𝑓 − 𝑔 ∈ Γ(𝑈, 𝐸). This amounts to
proving that 𝑓 − 𝑔 is continuous. Consider the function

𝑈
( 𝑓 ,𝑔)
−→ 𝐸𝜋𝐸

that sends 𝑥 ∈ 𝑈 to ( 𝑓 (𝑥), 𝑔(𝑥)). We claim that this function is continuous. Let 𝐶 and 𝐷 be open
subsets of 𝐸 ; to prove that ( 𝑓 , 𝑔) is continuous, it will suffice to prove that ( 𝑓 , 𝑔)−1((𝐸𝜋𝐸)∩(𝐶×𝐷))
is open. Now

( 𝑓 , 𝑔)−1((𝐸𝜋𝐸) ∩ (𝐶 × 𝐷)) = {𝑥 ∈ 𝑈 : ( 𝑓 (𝑥), 𝑔(𝑥)) ∈ (𝐸𝜋𝐸) ∩ (𝐶 × 𝐷)}
= {𝑥 ∈ 𝑈 : ( 𝑓 (𝑥), 𝑔(𝑥)) ∈ 𝐶 × 𝐷}
= {𝑥 ∈ 𝑈 : 𝑓 (𝑥) ∈ 𝐶} ∩ {𝑥 ∈ 𝑈 : 𝑔(𝑥) ∈ 𝐷}
= 𝑓 −1(𝐶) ∩ 𝑔−1(𝐷).

Since 𝑓 and 𝑔 are continuous, the sets 𝑓 −1(𝐶) and 𝑔−1(𝐷) are open; hence, 𝑓 −1(𝐶) ∩ 𝑔−1(𝐷) is
open, proving that ( 𝑓 , 𝑔) is continuous. Since ( 𝑓 , 𝑔) is continuous, so is the composition

𝑈
( 𝑓 ,𝑔)
−→ 𝐸𝜋𝐸

𝑚−→ 𝐸.

This composition is 𝑓 − 𝑔; hence, 𝑓 − 𝑔 is continuous. □

Let 𝑋 be a topological space, and let (𝐸, 𝑝) be an étalé space over 𝑋 . We say that (𝐸, 𝑝) is
an abelian étalé space or a étalé space of abelian groups if:
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(a) For every 𝑥 ∈ 𝑋 , the set 𝑝−1({𝑥}) is an abelian group.

(b) The minus map 𝑚 : 𝐸𝜋𝐸 → 𝐸 from Proposition 3.4.1 is continuous.

We note that if (𝐸, 𝑝) is an abelian étalé space over 𝑋 , then the set 𝑝−1({𝑥}) is non-empty for
every 𝑥 ∈ 𝑋 (since, by definition, a group is a non-empty set). Assume that (𝐸, 𝑝) and (𝐸′, 𝑝′)
are abelian étalé spaces over 𝑋 . A morphism (𝐸, 𝑝) → (𝐸′, 𝑝′) is a continuous function 𝐸 → 𝐸′

such that
𝐸 𝐸′

𝑋

𝑝 𝑝′

commutes, and, for all 𝑥 ∈ 𝑋 , the induced function

𝑝−1({𝑥}) −→ 𝑝′−1({𝑥})

is a homomorphism of abelian groups.

From abelian étalé spaces to abelian sheaves
Let 𝑋 be a topological space. By Proposition 3.4.1, if (𝐸, 𝑝) is an abelian étalé space over 𝑋 , then
for all open subsets 𝑈 of 𝑋 , Γ(𝑈, 𝐸) is an abelian group under pointwise addition of functions,
and Γ𝐸 = Γ(·, 𝐸) is a sheaf with values in Ab, i.e., an abelian sheaf. If 𝑥 ∈ 𝑋 , then the canonical
bĳection

Γ(·, 𝐸)𝑥
∼−→ 𝑝−1({𝑥})

from Lemma 3.3.5 is an isomorphism of abelian groups. Let 𝑓 : (𝐸, 𝑝) → (𝐸′, 𝑝′) be a morphism
of abelian étalé spaces. Consider (𝐸, 𝑝) and (𝐸′, 𝑝′) as just étalé spaces; then 𝑓 is a morphism
of étalé spaces. In Lemma 3.3.6 we noted that, as a morphism of étalé spaces, the morphism 𝑓

induces a morphism

Γ(·, 𝐸)
Γ 𝑓
−→ Γ(·, 𝐸′)

of sheaves. It is straightforward to verify that Γ 𝑓 is, in fact, a morphism of abelian sheaves on 𝑋 .

From abelian presheaves to abelian étalé spaces
Proposition 3.4.2. Let 𝑋 be a topological space, and let F be presheaf on 𝑋 with values in Ab.
Then (𝐿F, 𝑝F) is an abelian étalé space.

Proof. If 𝑥 ∈ 𝑋 , then 𝑝−1
F
({𝑥}) = F𝑥 , by definition, and this is an abelian group. To complete

the proof we need to verify that the minus map 𝑚 : 𝐿F𝜋𝐿F → 𝐿F is continuous. Let (𝑒, 𝑒′) ∈
𝐿F𝜋𝐿F, and let 𝑥 = 𝑝F (𝑒) = 𝑝F (𝑒′). Let𝐶 be an open subset of 𝐿F that contains𝑚(𝑒, 𝑒′) = 𝑒−𝑒′.
We need to find an open subset 𝐷 of 𝐿F𝜋𝐿F such that (𝑒, 𝑒′) ∈ 𝐷 and 𝑚(𝐷) ⊂ 𝐶. Using the
definition of the topology on 𝐿F, we may assume that 𝐶 = 𝑟 (𝑊), where𝑊 is an open subset of 𝑋
such that 𝑥 ∈ 𝑊 and 𝑟 ∈ F(𝑊). By (a) of Lemma 2.3.1 there exists and open subset 𝑉 of 𝑋 suh
that 𝑥 ∈ 𝑋 and there exist 𝑠, 𝑠′ ∈ F(𝑉) such that 𝑠𝑥 = 𝑒 and 𝑠′𝑥 = 𝑒′. We may assume that 𝑉 ⊂ 𝑊 .
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Now 𝑠 − 𝑠′ ∈ F(𝑉) and (𝑠 − 𝑠′)𝑥 = 𝑠𝑥 − 𝑠′𝑥 = 𝑒 − 𝑒′ = 𝑟𝑥 . By (b) of Lemma 2.3.1, we may assume
that (𝑠 − 𝑠′)𝑦 = 𝑟𝑦 for 𝑦 ∈ 𝑉 . We now claim that

𝑚 ((𝑠(𝑉) × 𝑠′(𝑉)) ∩ (𝐿F𝜋𝐿F)) ⊂ 𝑟 (𝑊).

Let (𝑔, 𝑔′) ∈ (𝑠(𝑉) × 𝑠′(𝑉)) ∩ (𝐿F𝜋𝐿F). Then there exists 𝑦 ∈ 𝑉 such that 𝑔, 𝑔′ ∈ F𝑦, 𝑠𝑦 = 𝑔,
and 𝑠′𝑦 = 𝑔′. We have

𝑚(𝑔, 𝑔′) = 𝑔 − 𝑔′ = 𝑠𝑦 − 𝑠′𝑦 = (𝑠 − 𝑠′)𝑦 = 𝑟𝑦 ∈ 𝑟 (𝑊).

Also, it is evident that (𝑒, 𝑒′) ∈ (𝑠(𝑉) × 𝑠′(𝑉)) ∩ (𝐿F𝜋𝐿F). This completes the proof that 𝑚 is
continuous at (𝑒, 𝑒′). □

Let 𝑋 be a topological space, and let F and G be presheaves on 𝑋 with values in Ab.
Let 𝑓 : F → G be a morphism of presheaves. The induced morphism 𝐿 𝑓 : 𝐿F → 𝐿G of étalé
spaces is evidently a morphism of abelian étalé spaces.

From abelian étalé spaces to abelian sheaves to abelian étalé spaces
Theorem 3.3.9 holds in the abelian setting, with the same proof.

From abelian presheaves to abelian étalé spaces to abelian sheaves
Lemma 3.3.10, Lemma 3.3.11, Lemma 3.3.12 all hold in the abelian setting, with the same proofs
(it is straightforward to verify that 𝑛F is a morphism of abelian presheaves).

Sheafication of abelian presheaves
Lemma 3.3.13 and Theorem 3.3.14 both hold in the abelian setting.





Chapter 4

Morphisms

In this chapter we will prove some essential properties about morphisms between presheaves and
sheaves. One of the results of this chapter is that the category of presheaves and the category of
sheaves are both abelian categories, and we begin by defining this concept.

4.1 Abelian categories
In this section we define the concept of an abelian category. Let A be a category. Let 𝐹, 𝐺 ∈
Ob(A) and assume that 𝑓 ∈ Mor(𝐹, 𝐺). We say that 𝑓 is a monomorphism if, for all 𝐻 ∈ Ob(A)
and 𝑔, ℎ ∈ Mor(𝐻, 𝐹), if 𝑓 ◦ 𝑔 = 𝑓 ◦ ℎ, then 𝑔 = ℎ. We say that 𝑓 is an epimorphism if, for
all 𝐻 ∈ Ob(A) and 𝑔, ℎ ∈ Mor(𝐺, 𝐻), if 𝑔 ◦ 𝑓 = ℎ ◦ 𝑓 , then 𝑔 = ℎ. Assume that for every
pair of objects 𝐹, 𝐺 ∈ Ob(A) the set Mor(𝐹, 𝐺) is an abelian group (in particular, this implies
that Mor(𝐹, 𝐺) is non-empty). For A to be an abelian category the category A must satisfy four
axioms:

(AB1) There exists an object 0 ∈ Ob(A) such that Mor(𝐹, 0) and Mor(0, 𝐹) are the trivial group
for all 𝐹 ∈ Ob(A). Also, for all objects 𝐹, 𝐹′, 𝐺, 𝐺′ ∈ Ob(A), 𝑝 ∈ Mor(𝐹′, 𝐹), 𝑓 , 𝑔 ∈
Mor(𝐹, 𝐺), and 𝑞 ∈ Mor(𝐺,𝐺′), we have

( 𝑓 + 𝑔) ◦ 𝑝 = 𝑓 ◦ 𝑝 + 𝑔 ◦ 𝑝, 𝑞 ◦ ( 𝑓 + 𝑔) = 𝑞 ◦ 𝑓 + 𝑞 ◦ 𝑔. (4.1)

(AB2) (Biproducts) Let 𝐹, 𝐺 ∈ Ob(A). There exists an object 𝐹 ⊕ 𝐺 ∈ Ob(A) and morphisms

𝐹 𝐹

𝐹 ⊕ 𝐺

𝐺 𝐺

𝑖 𝑝

𝑞𝑗

such that:

43
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(a) For any 𝐻 ∈ Ob(A) and morphisms

𝐹

𝐻

𝐺

there exists a unique morphism 𝐹 ⊕ 𝐺 → 𝐻 such that

𝐹

𝐹 ⊕ 𝐺 𝐻

𝐺

𝑖

𝑗

commutes.
(b) For any object 𝐻 ∈ Ob(A) and morphisms

𝐹

𝐻

𝐺

(4.2)

there exists a unique morphism 𝐻 → 𝐹 ⊕ 𝐺 such that

𝐹

𝐻 𝐹 ⊕ 𝐺

𝐺

𝑝

𝑞

(4.3)

commutes.

(AB3) Let 𝐹, 𝐺 ∈ Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺).

(a) (Kernels) There exists 𝐾 ∈ Ob(A) and a morphism 𝑖 : 𝐾 → 𝐹 such that the compo-
sition

𝐾 𝐹 𝐺
𝑖 𝑓

is the zero morphism in Mor(𝐾,𝐺), and for any 𝐻 ∈ Ob(A) and 𝑔 ∈ Mor(𝐻, 𝐹)
such that the composition

𝐻 𝐹 𝐺
𝑔 𝑓
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is the zero morphism in Mor(𝐻,𝐺), there exists a unique morphism

𝐻 𝐾

such that
𝐻

𝐾 𝐹

𝑔

𝑖

commutes.
(b) (Cokernels) There exists 𝐶 ∈ Ob(A) and a morphism 𝑝 : 𝐺 → 𝐶 such that the

composition

𝐹 𝐺 𝐶
𝑓 𝑝

is the zero morphism in Mor(𝐹,𝐶), and for any 𝐻 ∈ Ob(A) and 𝑔 ∈ Mor(𝐺, 𝐻)
such that

𝐹 𝐺 𝐻
𝑓 𝑔

is the zero morphism in Mor(𝐹, 𝐻), there exists a unique morphism

𝐶 𝐻

such that
𝐻

𝐺 𝐶

𝑔

𝑝

commutes. In (a), we say that 𝑖 : 𝐾 → 𝐹 is a kernel of 𝑓 : 𝐹 → 𝐺, and in (b), we say
that 𝑝 : 𝐺 → 𝐶 is a cokernel of 𝑓 : 𝐹 → 𝐺.

(AB4) Let 𝐹, 𝐺 ∈ Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺). If 𝑓 is a monomorphism, then 𝑓 is a kernel of
some morphism. If 𝑓 is an epimorphism, then 𝑓 is a cokernel of some morphism.

Let the notation be as in the definition of an abelian category. Then the statement (AB3) is
equivalent to following statement (AB3)’. This is proven in the subsequent lemma.

(AB3)’ Let 𝐹, 𝐺 ∈ Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺).

(a) (Kernels) There exists 𝐾 ∈ Ob(A) and a morphism 𝑖 : 𝐾 → 𝐹 such that for all
objects 𝑋 ∈ Ob(A),

0 Mor(𝑋, 𝐾) Mor(𝑋, 𝐹) Mor(𝑋, 𝐺)𝑖◦· 𝑓 ◦· (4.4)

is an exact sequence of abelian groups.
(b) (Cokernels) There exists 𝐶 ∈ Ob(A) and a morphism 𝑝 : 𝐺 → 𝐶 such that for all

objects 𝑌 ∈ Ob(A),

0 Mor(𝐶,𝑌 ) Mor(𝐺,𝑌 ) Mor(𝐹,𝑌 )·◦𝑝 ·◦ 𝑓 (4.5)

is an exact sequence of abelian groups.
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Lemma 4.1.1. Let the notation be as in the definition of an abelian category. The conditions (AB3)
and (AB3)’ are equivalent.

Proof. Assume that (AB3) holds. Let 𝐹, 𝐺 ∈ Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺). Let 𝑖 : 𝐾 → 𝐹 be as
in (a) of (AB3). Let 𝑋 ∈ Ob(A). We need to prove that (4.4) is exact. Assume that ℎ ∈ Mor(𝑋, 𝐾)
is such that 𝑖 ◦ ℎ = 0. We then have 𝑓 ◦ (𝑖 ◦ ℎ) = 0. By the universal property of 𝑖, there exists a
unique morphism 𝑋 → 𝐾 such that

𝑋

𝐾 𝐹

𝑖◦ℎ=0

𝑖

commutes. The morphisms 0 and ℎ from 𝑋 to 𝐾 both make this diagram commute; by uniqueness,
we obtain ℎ = 0. It follows that (4.4) is exact at Mor(𝑋, 𝐾). Clearly, the composition of the second
and third maps of (4.4) is zero. Let 𝑔 ∈ Mor(𝑋, 𝐹) and assume that 𝑓 ◦ 𝑔 = 0. By the universal
property of 𝑖, there exists a unique morphism 𝑋 → 𝐾 such that

𝑋

𝐾 𝐹

𝑔

𝑖

commutes. Thus, 𝑔 is in the image of the second map of (4.4). This completes the proof that (4.4)
is exact so that (a) of (AB3)’ holds. Next, let 𝑝 : 𝐺 → 𝐶 be as in (b) of (AB3). Let𝑌 ∈ Ob(A). We
need to prove that (4.5) is exact. Let ℎ ∈ Mor(𝐶,𝑌 ) and assume that ℎ◦ 𝑝 = 0. Then (ℎ◦ 𝑝) ◦ 𝑓 = 0.
By the universal property of 𝑝, there exists a unique morphism 𝐶 → 𝑌 such that

𝑌

𝐺 𝐶

ℎ◦𝑝=0

𝑝

commutes. The morphisms 0 and ℎ both make this diagram commute; by uniqueness, ℎ = 0,
and (4.5) is exact at Mor(𝐶,𝑌 ). Clearly, the composition of the second and third maps in (4.5) is
zero. Let 𝑔 ∈ Mor(𝐺,𝑌 ) be such that 𝑔 ◦ 𝑓 = 0. By the universal property of 𝑝, there exists a
unique morphism 𝐶 → 𝑌 such that

𝑌

𝐺 𝐶

𝑔

𝑝

commutes. It follows that 𝑔 is in the image of the second map of (4.5). Hence, (4.5) is exact,
and (b) of (AB3)’ holds.

Now assume that (AB3)’ holds. Let 𝑖 : 𝐾 → 𝐹 be as in (a) of (AB3)’. Letting 𝑋 = 𝐾 in (4.4)
yields the following exact sequence:

0 Mor(𝐾, 𝐾) Mor(𝐾, 𝐹) Mor(𝐾,𝐺)𝑖◦· 𝑓 ◦·



4.1. ABELIAN CATEGORIES 47

Now 𝑖 ◦ id𝐾 = 𝑖 is in the image of the second map of this sequence; hence, the third maps sends 𝑖
to zero, i.e., 𝑓 ◦ 𝑖 = 0. Assume that 𝐻 ∈ Ob(A) and 𝑔 ∈ Mor(𝐻, 𝐹) is such that 𝑓 ◦ 𝑔 = 0. Since

0 Mor(𝐻, 𝐾) Mor(𝐻, 𝐹) Mor(𝐻,𝐺)𝑖◦· 𝑓 ◦·

is exact, there exists a unique morphism 𝐻 → 𝐾 such that

𝐻

𝐾 𝐹

𝑔

𝑖

commutes. This proves that (a) of (AB3) holds. The proof that (b) of (AB3) holds is similar. This
completes the proof that (AB3) holds. □

Proposition 4.1.2. Let A be a category and assume that A satisfies (AB1). Assume that 0, 0′ ∈
Ob(A) are such that Mor(𝐹, 0) = Mor(𝐹, 0′) = Mor(0, 𝐹) = Mor(0′, 𝐹) = 0 for all 𝐹 ∈ Ob(A).
There exists a unique isomorphism 𝑖 : 0 → 0′.

Proof. By assumption, both Mor(0, 0′) and Mor(0′, 0) are the trivial group. Let 𝑖 be the unique
element of Mor(0, 0′) and let 𝑗 be the unique element of Mor(0′, 0). Consider 𝑖 ◦ 𝑗 ∈ Mor(0′, 0′).
Since Mor(0′, 0′) is the trivial group, this set contains a unique element; since id0′ ∈ Mor(0′, 0′)
we must have 𝑖 ◦ 𝑗 = id0′ . Similarly, 𝑗 ◦ 𝑖 = id0. This proves the assertion. □

Proposition 4.1.3. Let A be a category and assume that A satisfies (AB1). Let 𝐹 ∈ Ob(A).
(a) Let 𝑓 ∈ Mor(𝐹, 0). If 𝑓 is a monomorphism, then 𝐹 is a zero object.
(b) Let 𝑓 ∈ Mor(0, 𝐹). If 𝑓 is an epimorphism, then 𝐹 is a zero object.

Proof. (a). Let 𝐺 ∈ Ob(A). We need to prove that Mor(𝐹, 𝐺) = Mor(𝐺, 𝐹) = 0. Let ℎ ∈
Mor(𝐺, 𝐹). Then 𝑓 ◦ ℎ = 𝑓 ◦ 0, where 0 ∈ Mor(𝐺, 𝐹). Since 𝑓 is a monomorphism, we
have ℎ = 0. We have proven that Mor(𝐺, 𝐹) = 0. Next, let ℎ ∈ Mor(𝐹, 𝐺). Then ℎ = ℎ ◦ id𝐹 .
However, Mor(𝐹, 𝐹) = 0 by what we have already proven. Hence, id𝐹 = 0. This implies that ℎ = 0,
and so Mor(𝐹, 𝐺) = 0.

(b). The proof of this statement is similar to the proof of (a). □

Proposition 4.1.4. Let A be a category and assume that A satisfies (AB1) and (AB3). Let 𝐹, 𝐺 ∈
Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺). Let 𝐾,𝐶 ∈ Ob(A), 𝑖 ∈ Mor(𝐾, 𝐹) and 𝑝 ∈ Mor(𝐺,𝐶) be such that 𝑖
is a kernel of 𝑓 and 𝑝 is a cokernel of 𝑓 . Then:

(a) 𝑓 is a monomorphism if and only if 𝐾 = 0.
(b) 𝑓 is an epimorphism if and only if 𝐶 = 0.

Proof. (a). Assume that 𝑓 is a monomorphism. We have 𝑓 ◦0 = 0 where the first 0 is in Mor(0, 𝐹).
Assume that 𝐻 ∈ Ob(A) and 𝑔 ∈ Mor(𝐻, 𝐹) is such that 𝑓 ◦ 𝑔 = 0. We also have 𝑓 ◦ 0 = 0 where
the first 0 is in Mor(𝐻, 𝐹). Since 𝑓 is a monomorphism we conclude that 𝑔 = 0. This implies that

𝐻

0 𝐹

𝑔
0

0
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commutes. Since Mor(𝐻, 0) = 0, 0 is the unique morphism in Mor(𝐻, 0) for which this diagram
commutes. It follows that 0 → 𝐹 is a kernel for 𝑓 , i.e., 𝐾 = 0.

Now assume that 𝐾 = 0. Let 𝐻 ∈ Ob(A) and 𝑔1, 𝑔2 ∈ Mor(𝐻, 𝐹) be such that 𝑓 ◦ 𝑔1 = 𝑓 ◦ 𝑔2.
Then 𝑓 ◦ (𝑔1 −𝑔2) = 0. By the universal property of 𝑖, there exists a unique element 𝑡 ∈ Mor(𝐻, 𝐾)
such that

𝐻

𝐾 𝐹

𝑔1−𝑔2
𝑡

𝑖

commutes. Since 𝐾 = 0 we have 𝑡 = 0. It follows that 𝑔1 − 𝑔2 = 0, i.e., 𝑔1 = 𝑔2. Thus, 𝑓 is a
monomorphism.

The proof of (b) is similar. □

Proposition 4.1.5. Let A be an abelian category. Every kernel of A is a monomorphism, and
every cokernel of A is an epimorphism.

Proof. Let 𝐹, 𝐺 ∈ Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺). Let 𝐾 ∈ Ob(A) and 𝑖 ∈ Mor(𝐾, 𝐹) be such that 𝑖
is a kernel of 𝑓 . Let 𝐻 ∈ Ob(A) and ℎ1, ℎ2 ∈ Mor(𝐻, 𝐹) be such that 𝑖 ◦ ℎ1 = 𝑖 ◦ ℎ2; we need to
prove that ℎ1 = ℎ2. Since 𝑖 ◦ ℎ1 = 𝑖 ◦ ℎ2 we have 𝑖 ◦ (ℎ1 − ℎ2) = 0. The composition

𝐻 𝐹 𝐺
0 𝑓

is the zero morphism in Mor(𝐻,𝐺). Since 𝑖 is a kernel of 𝑓 , there exists a unique morphism 𝑡 ∈
Mor(𝐻, 𝐾) such that

𝐻

𝐾 𝐹

0
𝑡

𝑖

commutes. If 0 ∈ Mor(𝐻, 𝐾) or ℎ1 − ℎ2 ∈ Mor(𝐻, 𝐾) is substituted for 𝑡, then this diagram
commutes; by the uniqueness property of 𝑡 we have 0 = 𝑡 = ℎ1 − ℎ2. It follows that ℎ1 = ℎ2. A
similar argument proves that every cokernel of A is an epimorphism. □

Proposition 4.1.6. Let A be an abelian category. Let 𝐹, 𝐺 ∈ Ob(A) and 𝑓 ∈ Mor(𝐹, 𝐺). The
morphism 𝑓 is an isomorphism if and only if 𝑓 is a monomorphism and an epimorphism.

Proof. Assume that 𝑓 is an isomorphism with inverse 𝑔 ∈ Mor(𝐺, 𝐹). Let 𝐻 ∈ Ob(A) and
let ℎ1, ℎ2 ∈ Mor(𝐻, 𝐹) be such that 𝑓 ◦ ℎ1 = 𝑓 ◦ ℎ2. Then

ℎ1 = id𝐹 ◦ ℎ1 = 𝑔 ◦ 𝑓 ◦ ℎ1 = 𝑔 ◦ 𝑓 ◦ ℎ2 = id𝐹 ◦ ℎ2 = ℎ2.

It follows that 𝑓 is an epimorphism. A similar argument shows that 𝑓 is a monomorphism.
Assume that 𝑓 is a monomorphism and an epimorphism. By (AB4), there exists 𝐻 ∈ Ob(A)

and 𝑝 ∈ Mor(𝐺, 𝐻) such that 𝑓 is a kernel for 𝑝. The composition

𝐹 𝐺 0𝑓 0
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is zero. Thus, we have 0 ◦ 𝑓 = 𝑝 ◦ 𝑓 . Since 𝑓 is an epimorphism we obtain 0 = 𝑝. Since 𝑝 = 0 the
composition

𝐺 𝐺 𝐻
id𝐺 𝑝

is zero. Since 𝑓 is a kernel for 𝑝, there exists 𝑔 ∈ Mor(𝐺, 𝐹) such that

𝐺

𝐹 𝐺

𝑔
id𝐺

𝑓

commutes. Thus, 𝑓 ◦ 𝑔 = id𝐺 . We also have

𝑓 ◦ 𝑔 = id𝐺
𝑓 ◦ 𝑔 ◦ 𝑓 = id𝐺 ◦ 𝑓
𝑓 ◦ 𝑔 ◦ 𝑓 = 𝑓

𝑓 ◦ 𝑔 ◦ 𝑓 = 𝑓 ◦ id𝐹
𝑔 ◦ 𝑓 = id𝐹 ,

where the last equality follows the assumption that 𝑓 is an epimorphism. □

Assume that A is an abelian category. Let 𝐹, 𝐺 ∈ Ob(A) and let 𝑓 ∈ Mor(𝐹, 𝐺). Since A is
an abelian category, the morphism 𝑓 admits a cokernel:

𝐺 coker 𝑓 .𝑝

We define an image of 𝑓 to be a kernel of 𝑝:

im 𝑓 = ker
(
𝐺 coker 𝑓𝑝

)
.

From the involved definitions, the following composition is zero:

im 𝑓 𝐺 coker 𝑓 .𝑖 𝑝 (4.6)

Lemma 4.1.7. Let A be an abelian category, let 𝐹, 𝐺, 𝐻 ∈ Ob(A), and let 𝑓 ∈ Mor(𝐹, 𝐺)
and 𝑔 ∈ Mor(𝐺, 𝐻). Assume that the composition

𝐹 𝐺 𝐻
𝑓 𝑔 (4.7)

is zero. There exists a unique morphism

im 𝑓 ker 𝑔𝑡 (4.8)

such that
im 𝑓

ker 𝑔 𝐺

𝑡
𝑖 (4.9)

commutes. The morphism 𝑡 : im 𝑓 → ker 𝑔 is a monomorphism.
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Proof. We first prove that the composition

im 𝑓 𝐺 𝐻
𝑖 𝑔 (4.10)

is zero. Since 𝑔 ◦ 𝑓 = 0, i.e., the composition (4.7) is zero, there exists a morphism

coker 𝑓 𝐻
𝑟

such that
𝐻

𝐺 coker 𝑓

𝑔

𝑝

𝑟

commutes. Since im 𝑓 = ker 𝑝 (by definition), we have 𝑝 ◦ 𝑖 = 0 (see (4.6)). Thus,

𝐻

𝐺 coker 𝑓

im 𝑓

𝑔

𝑝

𝑟

𝑖
0

commutes. We now deduce that 𝑔◦ 𝑖 = 0. Since 𝑔◦ 𝑖 = 0, from the universal property of ker 𝑔, there
exists a morphism as in (4.8) such that (4.9) commutes. Finally, by Proposition 4.1.5, the morphism 𝑖

is a monomorphism (recall the definition of im 𝑓 ). This implies that 𝑡 is also a monomorphism. □

Let A be an abelian category, let 𝐹, 𝐺, 𝐻 ∈ Ob(A), and let 𝑓 ∈ Mor(𝐹, 𝐺) and 𝑔 ∈
Mor(𝐺, 𝐻). Assume that the composition

𝐹 𝐺 𝐻
𝑓 𝑔 (4.11)

is zero. From Lemma 4.1.7, there is a canonical monomorphism

im 𝑓 ker 𝑔

We say that the sequence (4.11) is exact at 𝐺 if this monomorphism is an isomorphism (by
Proposition 4.1.6 this amounts to asserting that our monomorphism is also an epimorphism).

4.2 The first axiom
Let 𝑋 be a topological space. We define two categories. The first category is called PS𝑋 . We
define the objects of PS𝑋 to be

Ob(PS𝑋) = { abelian presheaves on 𝑋 }.
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The morphisms of PS𝑋 consist of the morphisms of abelian presheaves on 𝑋 as defined in Sec-
tion 2.4. The second category is called SH𝑋 . The objects of SH𝑋 are

Ob(SH𝑋) = { abelian sheaves on 𝑋 }.

The morphisms of SH𝑋 are the morphisms of abelian sheaves on 𝑋; as mentioned in Section 3.1,
these morphisms are defined exactly as in the case of presheaves. It is straightforward to verify
that PS𝑋 and SH𝑋 are categories. In this chapter we will prove that PS𝑋 and SH𝑋 are, in fact,
abelian categories as defined in Section 4.1.

For this, we first define an addition on Mor(F,G) so that Mor(F,G) is an abelian group
for F,G ∈ Ob(PS𝑋) or F,G ∈ Ob(SH𝑋). Let F,G ∈ Ob(PS𝑋) or F,G ∈ Ob(SH𝑋). Let 𝑓 , 𝑔 ∈
Mor(F,G). Let𝑈 be an open subset of 𝑋 . We define

F(𝑈) G(𝑈)( 𝑓 +𝑔) (𝑈)

by
( 𝑓 + 𝑔) (𝑈) (𝑥) = 𝑓 (𝑈) (𝑥) + 𝑔(𝑈) (𝑥)

for 𝑥 ∈ F(𝑈). Evidently, ( 𝑓 + 𝑔) (𝑈) is a homomorphism from the abelian group F(𝑈) to the
abelian group G(𝑈). We define

F G
𝑓 +𝑔

to be the collection {
F(𝑈) G(𝑈)( 𝑓 +𝑔) (𝑈)

}
𝑈 ⊂ 𝑋 open

A verification shows that 𝑓 + 𝑔 is morphism and that the set Mor(F,G) is an abelian group with
this definition.

Turning now to the first axiom for abelian categories, we let 0𝑋 be the constant presheaf
corresponding to trivial abelian group 0 (the group with one element). Thus, 0𝑋 (𝑈) = 0 for all
open subsets𝑈 of 𝑋 . See Section 2.2. In fact, 0𝑋 is also a sheaf (see p. 37) since the sheafification
of 0𝑋 is 0𝑋 (see p. 37). This is true because the trivial group contains a single element. We
have Mor(0𝑋 ,F) = 0 and Mor(F, 0𝑋) = 0 for F ∈ PS𝑋 and for F ∈ SH𝑋 . Also, it is easy to see
that the bilinearity condition (4.1) holds. Thus, with these defintions, both of the categories PS𝑋
and SH𝑋 satisfy axiom (AB1).

4.3 The second axiom
Let 𝑋 be a topological space. We will now verify that the categories PS𝑋 and SH𝑋 satisfy the
second axiom (AB2) of abelian categories. Let F,G ∈ PS𝑋 . Define

F ⊕ G : Open(𝑋) Ab

in the following way. If𝑈 is an open subset of 𝑋 , then we define

(F ⊕ G) (𝑈) = F(𝑈) ⊕ G(𝑈)
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If𝑈 and 𝑉 are open subsets of 𝑋 with 𝑉 ⊂ 𝑈, then we define

(F ⊕ G) (𝑈) (F ⊕ G) (𝑉)

as the direct sum of the two homomorphisms

F(𝑈) F(𝑉) and G(𝑈) G(𝑉) .

It is straightforward to verify that F ⊕ G is a presheaf. We also have natural morphisms of
presheaves as follows:

F F

F ⊕ G

G G

𝑖 𝑝

𝑞𝑗

Proposition 4.3.1. Let 𝑋 be a topological space, and let F,G ∈ PS𝑋 . The presheaf F ⊕ G, with
the above morphisms, satisfies the assertions of (AB2).

Proof. Let H ∈ PS𝑋 and let
F

H

G

𝑓

𝑔

be morphisms. Let𝑈 be an open subset of 𝑋 . We define

(F ⊕ G) (𝑈) = F(𝑈) ⊕ G(𝑈) H(𝑈)ℎ(𝑈)

by
ℎ(𝑈) (𝑎, 𝑏) = 𝑓 (𝑈) (𝑎) + 𝑔(𝑈) (𝑏)

for 𝑎 ∈ F(𝑈) and 𝑏 ∈ G(𝑈). The collection{
(F ⊕ G) (𝑈) H(𝑈)ℎ(𝑈)

}
𝑈 ⊂ 𝑋 open

is a morphism of presheaves. We claim that

F

F ⊕ G H

G

𝑖

𝑓

ℎ

𝑗

𝑔

(4.12)
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commutes. Let𝑈 be a open subset of 𝑋 and let 𝑎 ∈ F(𝑈). Then

(ℎ(𝑈) ◦ 𝑖(𝑈)) (𝑎) = ℎ(𝑈) (𝑎, 0)
= 𝑓 (𝑈) (𝑎) + ℎ(𝑈) (0)
= 𝑓 (𝑈) (𝑎).

Hence, ℎ(𝑈) ◦ 𝑖(𝑈) = 𝑓 (𝑈). Similarly, ℎ(𝑈) ◦ 𝑗 (𝑈) = 𝑔(𝑈). This proves our claim that (4.12)
commutes. Next, suppose that

F ⊕ G H
ℎ′

is a morphism of presheaves such that (4.12) commutes with ℎ′ in place of ℎ; we will prove
that ℎ = ℎ′. Let𝑈 be an open subset of 𝑋 . Let 𝑎 ∈ F(𝑈) and 𝑏 ∈ G(𝑈). Then

ℎ′(𝑈) (𝑎, 𝑏) = ℎ′(𝑈) ((𝑎, 0) + (0, 𝑏))
= ℎ′(𝑈) (𝑎, 0) + ℎ′(𝑈) (0, 𝑏)
= ℎ′(𝑈) (𝑖(𝑈) (𝑎)) + ℎ′(𝑈) ( 𝑗 (𝑈) (𝑏))
= (ℎ′(𝑈) ◦ 𝑖(𝑈)) (𝑎) + (ℎ′(𝑈) ◦ 𝑗 (𝑈)) (𝑏)
= 𝑓 (𝑈) (𝑎) + 𝑔(𝑈) (𝑏)
= ℎ(𝑈) (𝑎, 𝑏).

It follows that ℎ′ = ℎ. We have proven that F ⊕ G, along with the morphisms 𝑖, 𝑗 , 𝑝, and 𝑞,
satisfy (a) of (AB2). Similar arguments prove that (b) of (AB2) is also satisfied. □

Proposition 4.3.2. Let 𝑋 be a topological space, and let F,G ∈ SH𝑋 . Then S ⊕ G is a sheaf.

Proof. We need to verify that F⊕G verifies the gluing condition (G) and the locality condition (L).
To verify (G), let𝑈 be an open subset of 𝑋 , let {𝑈𝑖}𝑖∈𝐼 be an open cover of𝑈, and let {𝑠𝑖}𝑖∈𝐼 be such
that 𝑠𝑖 ∈ (F ⊕ G) (𝑈𝑖) for 𝑖 ∈ 𝐼 and for all 𝑖, 𝑗 ∈ 𝐼 we have 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

(𝑠𝑖) = 𝜌𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑠 𝑗 ). From

the definition of F ⊕ G, for each 𝑖 ∈ 𝐼 we have 𝑠𝑖 = (𝑎𝑖, 𝑏𝑖) where 𝑎𝑖 ∈ F(𝑈𝑖) and 𝑏𝑖 ∈ G(𝑈𝑖).
Also, we see that for all 𝑖, 𝑗 ∈ 𝐼 we have 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

(𝑎𝑖) = 𝜌𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑎 𝑗 ) and 𝜌𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

(𝑏𝑖) =

𝜌𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗
(𝑏 𝑗 ). SinceF andG satisfy (G), there exist 𝑎 ∈ F(𝑈) and 𝑏 ∈ G(𝑈) such that 𝜌𝑈,𝑈𝑖

(𝑎) =
𝑎𝑖 and 𝜌𝑈,𝑈𝑖

(𝑏) = 𝑏𝑖 for 𝑖 ∈ 𝐼. Taking the definitions into account, we have 𝜌𝑈,𝑈𝑖
(𝑎, 𝑏) =

(𝜌𝑈,𝑈𝑖
(𝑎), 𝜌𝑈,𝑈𝑖

(𝑏)) = (𝑎𝑖, 𝑏𝑖) = 𝑠𝑖 for 𝑖 ∈ 𝐼. This verifies (G) for F ⊕ G. The locality condition
is similarly verified. □

Corollary 4.3.3. Let 𝑋 be a topological space. The categories PS𝑋 and SH𝑋 satisfy axiom (AB2)
of the definition of an abelian category.

Proof. The category PS𝑋 satisfies axiom (AB2) by Proposition 4.3.1. The category PS𝑋 satisfies
axiom (AB2) by Proposition 4.3.1 and Proposition 4.3.2. □

4.4 The third axiom
Let 𝑋 be a topological space. In this section we will prove that PS𝑋 and SH𝑋 satisfy the third
axiom (AB3) of abelian categories.
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Kernels
Let F,G ∈ PS𝑋 , and let 𝑓 ∈ Mor(F,G). If𝑈 is an open subset of 𝑋 , then we define

(ker 𝑓 ) (𝑈) = {𝑠 ∈ F(𝑈) : 𝑓 (𝑈) (𝑠) = 0}.

Evidently, (ker 𝑓 ) (𝑈) is an subgroup of F(𝑈) for every open subset of 𝑋 . Let 𝑈 and 𝑉 be open
subsets of 𝑋 with 𝑉 ⊂ 𝑈. Since 𝑓 is a morphism, the following diagram commutes:

F(𝑈) G(𝑈)

F(𝑉) G(𝑉)

𝑓 (𝑈)

𝜌F
𝑈,𝑉 𝜌

G

𝑈,𝑉

𝑓 (𝑉)

Here, the vertical arrows are the restriction maps for F and G. Let 𝑠 ∈ (ker 𝑓 ) (𝑈). Then

𝑓 (𝑉) (𝜌F𝑈,𝑉 (𝑠)) = 𝜌
G

𝑈,𝑉
( 𝑓 (𝑈) (𝑠)) = 𝜌G

𝑈,𝑉
(0) = 0.

It follows that
𝜌F𝑈,𝑉 ((ker 𝑓 ) (𝑈)) ⊂ (ker 𝑓 ) (𝑉).

We now see that ker 𝑓 , equipped with the restrictions of the 𝜌F
𝑈,𝑉

, is a presheaf on 𝑋 with values
in Ab, i.e., ker 𝑓 ∈ PS𝑋 . For each open subset𝑈 of 𝑋 , let

(ker 𝑓 ) (𝑈) F(𝑈)𝑖(𝑈)

be the inclusion function. It is straightforward to verify that the collection

𝑖 =

{
(ker 𝑓 ) (𝑈) F(𝑈)𝑖(𝑈)

}
𝑈 ⊂ 𝑋 open

is an element of Mor(ker 𝑓 ,F).
Proposition 4.4.1. Let 𝑋 be a topological space. Let F,G ∈ PS𝑋 and 𝑓 ∈ Mor(F,G). The
composition

ker 𝑓 F G
𝑖 𝑓

is the zero morphism in Mor(ker 𝑓 ,G), and for any H ∈ PS𝑋 and 𝑔 ∈ Mor(H,F) such that the
composition

H F G
𝑔 𝑓

is the zero morphism in Mor(H,G), there exists a unique morphism

H ker 𝑓𝑗

such that
H

ker 𝑓 F

𝑔
𝑗

𝑖

commutes.
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Proof. It is clear that 𝑓 ◦𝑖 is the zero morphism in Mor(ker 𝑓 ,G). LetH ∈ PS𝑋 and 𝑔 ∈ Mor(H,F)
be such that 𝑓 ◦𝑔 is the zero morphism in Mor(H,G). Let𝑈 be an open subset of 𝑋 . Since 𝑓 ◦𝑔 = 0,
we have 𝑓 (𝑈)◦𝑔(𝑈) = 0. This implies that 𝑔(𝑈) (H(𝑈)) ⊂ (ker 𝑓 ) (𝑈). It follows that the function

H(𝑈) (ker 𝑓 ) (𝑈)𝑗 (𝑈)

that sends 𝑠 ∈ H(𝑈) to 𝑔(𝑈) (𝑠) is well-defined. Also, it is easy to check that

H ker 𝑓𝑗
=

{
H(𝑈) (ker 𝑓 ) (𝑈)𝑗 (𝑈)

}
𝑈 ⊂ 𝑋 open

is a morphism of presheaves and is thus in Mor(H, ker 𝑓 ). We see that 𝑔 = 𝑖 ◦ 𝑗 . Finally, assume
that 𝑗 ′ ∈ Mor(H, ker 𝑓 ) is also such that 𝑔 = 𝑖◦ 𝑗 ′. Let𝑈 be an open subset of 𝑋 , and let 𝑠 ∈ H(𝑈).
Then

𝑔(𝑈) (𝑠) = 𝑖(𝑈) ( 𝑗 ′(𝑈) (𝑠)) = 𝑗 ′(𝑈) (𝑠).
Since 𝑗 (𝑈) (𝑠) = 𝑔(𝑈) (𝑠), we obtain 𝑗 ′(𝑈) = 𝑗 (𝑈); it follows that 𝑗 ′ = 𝑗 . □

Lemma 4.4.2. Let 𝑋 be a topological space. Let F,G ∈ SH𝑋 , and let 𝑓 ∈ Mor(F,G). The
presheaf ker 𝑓 is a sheaf.

Proof. We first verify the gluing condition (G) for ker 𝑓 . Let𝑈 be an open subset of 𝑋 . Let {𝑈𝑖}𝑖∈𝐼
of 𝑈, let {𝑠𝑖}𝑖∈𝐼 be such that 𝑠𝑖 ∈ (ker 𝑓 ) (𝑈𝑖) for 𝑖 ∈ 𝐼, and assume that for all 𝑖, 𝑗 ∈ 𝐼 we
have 𝜌F

𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝑠𝑖) = 𝜌F𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗

(𝑠 𝑗 ). SinceF satisfies the gluing condition (G), there exists 𝑠 ∈ F(𝑈)
such that 𝜌F

𝑈,𝑈𝑖
(𝑠) = 𝑠𝑖 for all 𝑖 ∈ 𝐼. We need to prove that 𝑠 ∈ (ker 𝑓 ) (𝑈), i.e., 𝑓 (𝑈) (𝑠) = 0.

Let 𝑖 ∈ 𝐼. The following diagram commutes:

F(𝑈) G(𝑈)

F(𝑈𝑖) G(𝑈𝑖)

𝑓 (𝑈)

𝜌F
𝑈,𝑈𝑖

𝜌
G

𝑈,𝑈𝑖

𝑓 (𝑈𝑖)

Therefore,

𝜌
G

𝑈,𝑈𝑖
( 𝑓 (𝑈) (𝑠)) = 𝑓 (𝑈𝑖) (𝜌F𝑈,𝑈𝑖

(𝑠))
= 𝑓 (𝑈𝑖) (𝑠𝑖)
= 0.

Of course, we also have 𝜌G
𝑈,𝑈𝑖

(0) = 0. By the locality condition (L) forGwe have 𝑓 (𝑈) (𝑠) = 0. This
verifies the gluing condition (G) for ker 𝑓 . The locality condition for ker 𝑓 is proved similarly. □

Cokernels
Again let 𝑋 be a topological space. Let F,G ∈ PS𝑋 and 𝑓 ∈ Mor(F,G). If 𝑈 is an open subset
of 𝑋 , then we define

(pcok 𝑓 ) (𝑈) = G(𝑈)/im( 𝑓 (𝑈)).
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Let𝑈 and 𝑉 be open subsets of 𝑋 such that 𝑉 ⊂ 𝑈. Since 𝑓 is a morphism, the diagram

F(𝑈) G(𝑈)

F(𝑉) G(𝑉)

𝑓 (𝑈)

𝜌F
𝑈,𝑉 𝜌

G

𝑈,𝑉

𝑓 (𝑉)

commutes. It follows that
𝜌
G

𝑈,𝑉
(im( 𝑓 (𝑈))) ⊂ im( 𝑓 (𝑉)). (4.13)

Define

(pcok 𝑓 ) (𝑈) = G(𝑈)/im( 𝑓 (𝑈)) (pcok 𝑓 ) (𝑉) = G(𝑉)/im( 𝑓 (𝑉)) (4.14)

by
𝑟 ↦→ 𝜌

G

𝑈,𝑉
(𝑟) + im( 𝑓 (𝑉))

for 𝑟 ∈ G(𝑈); since we have the inclusion (4.13), this map is a well-defined homomorphism. It is
straightforward to verify that the assignment 𝑈 ↦→ (pcok 𝑓 ) (𝑈) for 𝑈 an open subset of 𝑋 , along
with the restriction maps (4.14), is an element of PS𝑋 . For each open subset𝑈 of 𝑋 , let

G(𝑈) (pcok 𝑓 ) (𝑈) = G(𝑈)/im( 𝑓 (𝑈))𝑝(𝑈)

be the natural projection. The collection

𝑝 =

{
G(𝑈) (pcok 𝑓 ) (𝑈)𝑝(𝑈)

}
𝑈 ⊂ 𝑋 open

(4.15)

is an element of Mor(G, pcok 𝑓 ).

Proposition 4.4.3. Let 𝑋 be a topological space. Let F,G ∈ PS𝑋 and 𝑓 ∈ Mor(F,G). The
composition

F G pcok 𝑓𝑓 𝑝

is the zero morphism in Mor(F, pcok 𝑓 ), and for any H ∈ PS𝑋 and 𝑔 ∈ Mor(G,H) such that the
composition

F G H
𝑓 𝑔

is the zero morphism in Mor(F,H), there exists a unique morphism

pcok 𝑓 H
𝑞

such that
H

G pcok 𝑓

𝑔

𝑝

𝑞

commutes.
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Proof. It is clear that 𝑝 ◦ 𝑓 is the zero morphism in Mor(F, pcok 𝑓 ). Let H ∈ PS𝑋 and 𝑔 ∈
Mor(G,H) be such that 𝑔 ◦ 𝑓 is the zero morphism in Mor(F,H). Let𝑈 be an open subset of 𝑋 .
Since 𝑔 ◦ 𝑓 = 0, we have 𝑔(𝑈) ◦ 𝑓 (𝑈) = 0. This implies that 𝑔(𝑈) (im( 𝑓 (𝑈))) = 0. It follows that
the function

(pcok 𝑓 ) (𝑈) = G(𝑈)/im( 𝑓 (𝑈)) H(𝑈)𝑞(𝑈)

that sends 𝑠 + im( 𝑓 (𝑈)) for 𝑠 ∈ G(𝑈) to 𝑔(𝑈) (𝑠) is well-defined. Also, it is easy to check that

pcok 𝑓 H
𝑞

=

{
(pcok 𝑓 ) (𝑈) H(𝑈)𝑞(𝑈)

}
𝑈 ⊂ 𝑋 open

is a morphism of presheaves and is thus in Mor(pcok 𝑓 ,H). We see that 𝑔 = 𝑞 ◦ 𝑝. Finally,
assume that 𝑞′ ∈ Mor(pcok 𝑓 ,H) is also such that 𝑔 = 𝑞′ ◦ 𝑝. Let 𝑈 be an open subset of 𝑋 , and
let 𝑠 ∈ G(𝑈). Then

𝑔(𝑈) (𝑠) = 𝑞′(𝑈) (𝑝(𝑈) (𝑠)) = 𝑞′(𝑈) (𝑠 + (im 𝑓 ) (𝑈)).

Similarly, 𝑔(𝑈) (𝑠) = 𝑞(𝑈) (𝑠 + (im 𝑓 ) (𝑈)), so that 𝑞′(𝑈) (𝑠 + (im 𝑓 ) (𝑈)) = 𝑞(𝑈) (𝑠 + (im 𝑓 ) (𝑈)).
This implies that 𝑞′(𝑈) = 𝑞(𝑈) and hence 𝑞′ = 𝑞. □

Now assume that F,G ∈ SH𝑋 and 𝑓 ∈ Mor(F,G). Above, we defined the presheaf pcok 𝑓 ∈
PS𝑋 . We now define

scok 𝑓 = sheafification of pcok 𝑓 = Γ𝐿 (pcok 𝑓 ).

We recall that there exists a canonical morphism of presheaves

pcok 𝑓 scok 𝑓
𝑛=𝑛pcok 𝑓

as in (3.10). See Theorem 3.3.14 (note that we verified in Section 3.4 that this theorem also holds
in the abelian setting). Let

G pcok 𝑓𝑝

be the morphism (4.15), and which has the universal property as in Proposition 4.4.3. We let

G scok 𝑓𝑝𝑠

be the composition
G pcok 𝑓 scok 𝑓𝑝 𝑛

We have the following result.

Proposition 4.4.4. Let 𝑋 be a topological space. Let F,G ∈ SH𝑋 and 𝑓 ∈ Mor(F,G). The
composition

F G scok 𝑓𝑓 𝑝𝑠
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is the zero morphism in Mor(F, scok 𝑓 ), and for any H ∈ SH𝑋 and 𝑔 ∈ Mor(G,H) such that the
composition

F G H
𝑓 𝑔

is the zero morphism in Mor(F,H), there exists a unique morphism

scok 𝑓 H
𝑚

such that
H

G scok 𝑓

𝑔

𝑝𝑠

𝑚

commutes.

Proof. In this proof we will use Theorem 3.3.14 (note that we verified in Section 3.4 that this
theorem also holds in the abelian setting). We first note that 𝑝𝑠 ◦ 𝑓 = 𝑚 ◦ 𝑝 ◦ 𝑓 = 𝑚 ◦ 0 = 0,
that is, 𝑝𝑠 ◦ 𝑓 is the zero morphism in Mor(F, scok 𝑓 ). Let H ∈ SH𝑋 and 𝑔 ∈ Mor(G,H) be
such that 𝑔 ◦ 𝑓 is the zero morphism in Mor(F,H). By Proposition 4.4.3, there exists a unique
morphism

pcok 𝑓 H
𝑞

such that
H

G pcok 𝑓

𝑔

𝑝

𝑞

commutes. By Theorem 3.3.14 there exists a unique morphism 𝑚 ∈ Mor(scok 𝑓 ,H) such that

H

pcok 𝑓 scok 𝑓

𝑞

𝑛

𝑚

commutes. Putting the last two diagrams together, we obtain the following commutative diagram:

H

G scok 𝑓

𝑔

𝑝𝑠=𝑛◦𝑝

𝑚

Finally, assume that 𝑚′ ∈ Mor(scok 𝑓 ,H) is such that

H

G scok 𝑓

𝑔

𝑝𝑠=𝑛◦𝑝

𝑚′
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commutes. We can rewrite this commutative diagram as the following commutative diagram:

H

G pcok 𝑓

𝑔

𝑝

𝑚′◦𝑛

By the uniqueness property of 𝑞 we have 𝑞 = 𝑚′ ◦ 𝑛 so that the following diagram commutes:

𝑎𝑛𝑑

H

pcok 𝑓 scok 𝑓

𝑞

𝑛
𝑚′

By the uniqueness property of 𝑚, we conclude that 𝑚′ = 𝑚. □

Corollary 4.4.5. Let 𝑋 be a topological space. The categories PS𝑋 and SH𝑋 satisfy axiom (AB3)
of the definition of an abelian category.

Proof. The category PS𝑋 satisfies axiom (AB3) by Proposition 4.4.1 and Proposition 4.4.3. The
category SH𝑋 satisfies axiom (AB3) by Proposition 4.4.1, Lemma 4.4.2 and Proposition 4.4.4. □

Corollary 4.4.6. Let 𝑋 be a topological space. Let F,G ∈ PS𝑋 and 𝑓 ∈ Mor(F,G). Then

(a) 𝑓 is a monomorphism if and only if ker 𝑓 (𝑈) = 0 for all open subsets𝑈 of 𝑋 .
(b) 𝑓 is an epimorphism if and only if im 𝑓 (𝑈) = G(𝑈) for all open subsets𝑈 of 𝑋 .

Proof. To begin, we note that we have already verified that PS𝑋 satisfies (AB1) and (AB3) (see
Section 4.2 and Corollary 4.4.5).

(a). By Proposition 4.1.4, 𝑓 is a monomorphism if and only if ker 𝑓 = 0. The definition of ker 𝑓
implies that ker 𝑓 = 0 if and only if ker 𝑓 (𝑈) = 0 for all open subsets of𝑈.

(b). By Proposition 4.1.4, 𝑓 is an epimorphism if and only if pcok 𝑓 = 0. The definition
of pcok 𝑓 implies that pcok 𝑓 = 0 if and only if im 𝑓 (𝑈) = G(𝑈) for all open subsets of𝑈. □

4.5 The fourth axiom
Lemma 4.5.1. Let 𝐹, 𝐺, and 𝐻 be abelian groups, let 𝑓 : 𝐹 → 𝐺 be a monomorphism, and
let 𝑔 : 𝐻 → 𝐺 be a homomorphism such that 𝑔(𝐻) ⊂ 𝑓 (𝐹). There exists a unique homomor-
phism 𝑡 : 𝐻 → 𝐹 such that

𝐻

𝐹 𝐺

𝑡
𝑔

𝑓

commutes.

Proof. Since 𝑓 is injective, there exists a homomorphism 𝑓 ′ : 𝑓 (𝐹) → 𝐹 such that 𝑓 ( 𝑓 ′(𝑥)) = 𝑥
for 𝑥 ∈ 𝐹. Define 𝑡 : 𝐻 → 𝐹 by 𝑡 (𝑦) = 𝑓 ′(𝑔(𝑦)) for 𝑦 ∈ 𝐻. Then 𝑡 is a homomorphism and the
above diagram commutes. Since 𝑓 is a monomorphism, 𝑡 is unique. □
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Proposition 4.5.2. Let 𝑋 be a topological space. LetF,G ∈ PS𝑋 , and let 𝑓 ∈ Mor(F,G). Assume
that 𝑓 is a monomorphism. Then 𝑓 is a kernel for the morphism 𝑝 : G → pcok 𝑓 .

Proof. Since 𝑝 : G → pcok 𝑓 is a cokernel for 𝑓 the composition

F G pcok 𝑓𝑓 𝑝

is the zero morphism in Mor(F, pcok 𝑓 ). Assume that H ∈ PS𝑋 and 𝑔 ∈ Mor(H,G) is such that

H G pcok 𝑓𝑔 𝑝

is the zero morphism in Mor(H, pcok 𝑓 ). Let 𝑈 be an open subset of 𝑋 . By Lemma 4.5.1, there
exists a unique homomorphism 𝑡 (𝑈) : H(𝑈) → F(𝑈) such that

H(𝑈)

F(𝑈) G(𝑈)

𝑡 (𝑈)
𝑔(𝑈)

𝑓 (𝑈)

commutes. The collection

𝑡 =

{
H(𝑈) F(𝑈)𝑡 (𝑈)

}
𝑈 ⊂ 𝑋 open

is an element of Mor(H,F) and the diagram

H

F G

𝑡
𝑔

𝑓

commutes. The uniqueness of 𝑡 follows from the uniqueness of 𝑡 (𝑈) for 𝑈 an open subset of 𝑋 as
in Lemma 4.5.1. □

Lemma 4.5.3. Let 𝐹, 𝐺, and 𝐻 be abelian groups. Let 𝑓 : 𝐹 → 𝐺 be an epimorphism, and
let 𝑔 : 𝐹 → 𝐻 be a homomorphism such that 𝑔(ker 𝑓 ) = 0. There exists a unique homomor-
phism 𝑡 : 𝐺 → 𝐻 such that

𝐹 𝐻

𝐺

𝑔

𝑓
𝑡

commutes.

Proof. Define 𝑡 : 𝐺 → 𝐻 by 𝑡 (𝑦) = 𝑔(𝑥) for 𝑦 ∈ 𝐺, where 𝑥 ∈ 𝐹 is such that 𝑓 (𝑥) = 𝑦; since 𝑓 is
surjective, such an 𝑥 exists. Since 𝑔(ker 𝑓 ) = 0, the function 𝑡 is well-defined. It is straightforward
to verify that 𝑡 is a homomorphism, that the diagram commutes, and that 𝑡 is unique. □
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Proposition 4.5.4. Let 𝑋 be a topological space. LetF,G ∈ PS𝑋 , and let 𝑓 ∈ Mor(F,G). Assume
that 𝑓 is an epimorphism. Then 𝑓 is a cokernel for the morphism 𝑖 : ker 𝑓 → F.

Proof. Since 𝑖 : ker 𝑓 → F is a kernel for 𝑓 , the composition

ker 𝑓 F G
𝑖 𝑓

is zero. Assume that H ∈ PS𝑋 and 𝑔 ∈ Mor(F,H) is such that the composition

ker 𝑓 F H
𝑖 𝑔

is zero. Let 𝑈 be an open subset of 𝑋 . Then 𝑔(𝑈) (ker 𝑓 (𝑈)) = 0. By Lemma 4.5.3, there exists a
unique homomorphism 𝑡 (𝑈) : G(𝑈) → H(𝑈) such that

F(𝑈) H(𝑈)

G(𝑈)

𝑔(𝑈)

𝑓 (𝑈)
𝑡 (𝑈)

The collection
𝑡 =

{
G(𝑈) H(𝑈)𝑡 (𝑈)

}
𝑈 ⊂ 𝑋 open

is an element of Mor(G,H) such that the diagram

F H

G

𝑔

𝑓
𝑡

commutes. The uniqueness of 𝑡 follows from the uniqueness of 𝑡 (𝑈) for 𝑈 an open subset of 𝑋 as
in Lemma 4.5.3. □

Lemma 4.5.5. Let 𝑋 be a topological space. Let F,G ∈ PS𝑋 and 𝑓 ∈ Mor(F,G). If F is a
monopresheaf, and 𝑓𝑥 is a monomorphism for all 𝑥 ∈ 𝑋 , then 𝑓 is a monomorphism.

Proof. Assume that F is a monopresheaf and 𝑓𝑥 is a monomorphism for all 𝑥 ∈ 𝑋 . Let H ∈ PS𝑋
and let ℎ1, ℎ2 ∈ Mor(H,F) be such that 𝑓 ◦ ℎ1 = 𝑓 ◦ ℎ2; we need to prove that ℎ1 = ℎ2. If 𝑥 ∈ 𝑋 ,
then 𝑓𝑥 ◦ ℎ1,𝑥 = 𝑓𝑥 ◦ ℎ2,𝑥 and so ℎ1,𝑥 = ℎ2,𝑥 since 𝑓𝑥 is a monomorphism. By Corollary 3.1.2,
since F is a monopresheaf, we conclude that ℎ1 = ℎ2. □

Lemma 4.5.6. Let 𝑋 be a topological space. Let F,G ∈ SH𝑋 and 𝑓 ∈ Mor(F,G). If 𝑓
is a monomorphism, then the presheaf pcok 𝑓 satisfies the locality condition (L) and is thus a
monopresheaf.

Proof. Let 𝑈 be an open subset of 𝑋 and let {𝑈𝑖}𝑖∈𝐼 be an open cover 𝑋 . Let 𝑟, 𝑟′ ∈ (pcok 𝑓 ) (𝑈)
be such that 𝜌pcok 𝑓

𝑈,𝑈𝑖
(𝑟) = 𝜌

pcok 𝑓
𝑈,𝑈𝑖

(𝑟′) for all 𝑖 ∈ 𝐼; we need to prove that 𝑟 = 𝑟′. Now for 𝑖 ∈ 𝐼 we
have (pcok 𝑓 ) (𝑈) = G(𝑈)/im 𝑓 (𝑈); hence, there exists 𝑠, 𝑠′ ∈ G(𝑈) such that 𝑟 = 𝑠 + im 𝑓 (𝑈)
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and 𝑟′ = 𝑠′ + im 𝑓 (𝑈). To prove that 𝑟 = 𝑟′ it will suffice to prove that 𝑠 − 𝑠′ ∈ im 𝑓 (𝑈). By our
assumption, 𝜌G

𝑈,𝑈𝑖
(𝑠 − 𝑠′) ∈ im 𝑓 (𝑈𝑖) for all 𝑖 ∈ 𝐼; for each 𝑖 ∈ 𝐼, let 𝑡𝑖 ∈ F(𝑈𝑖) be such that

𝑓 (𝑈𝑖) (𝑡𝑖) = 𝜌G𝑈,𝑈𝑖
(𝑠 − 𝑠′). (4.16)

Let 𝑖, 𝑗 ∈ 𝐼. The following diagram commutes

F(𝑈𝑖) G(𝑈𝑖)

F(𝑈𝑖 ∩𝑈 𝑗 ) G(𝑈𝑖 ∩𝑈 𝑗 ).

𝑓 (𝑈𝑖)

𝜌F
𝑈𝑖 ,𝑈𝑖∩𝑈𝑗

𝜌
G

𝑈𝑖 ,𝑈𝑖∩𝑈𝑗

𝑓 (𝑈𝑖∩𝑈 𝑗 )

Hence,

𝑓 (𝑈𝑖 ∩𝑈 𝑗 ) (𝜌F𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝑡𝑖)) = 𝜌G𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗

( 𝑓 (𝑈𝑖) (𝑡𝑖))

= 𝜌
G

𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝜌G
𝑈,𝑈𝑖

(𝑠 − 𝑠′))

= 𝜌
G

𝑈,𝑈𝑖∩𝑈 𝑗
(𝑠 − 𝑠′).

Similarly,
𝑓 (𝑈𝑖 ∩𝑈 𝑗 ) (𝜌F𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗

(𝑡𝑖)) = 𝜌G𝑈,𝑈𝑖∩𝑈 𝑗
(𝑠 − 𝑠′).

Since the right-hand sides of these equations are the same, we have

𝑓 (𝑈𝑖 ∩𝑈 𝑗 ) (𝜌F𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝑡𝑖)) = 𝑓 (𝑈𝑖 ∩𝑈 𝑗 ) (𝜌F𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗

(𝑡𝑖)).

Since 𝑓 is a monomorphism, by Proposition 4.1.4 we have ker 𝑓 = 0. It follows that 𝑓 (𝑈𝑖 ∩𝑈 𝑗 ) is
injective. Hence,

𝜌F𝑈𝑖 ,𝑈𝑖∩𝑈 𝑗
(𝑡𝑖) = 𝜌F𝑈 𝑗 ,𝑈𝑖∩𝑈 𝑗

(𝑡𝑖).

Since F satisfies the gluing condition (G), there exists 𝑡 ∈ F(𝑈) such that

𝜌F𝑈,𝑈𝑖
(𝑡) = 𝑡𝑖 (4.17)

for 𝑖 ∈ 𝐼. Let 𝑖 ∈ 𝐼. Then by (4.16) and (4.17)

𝜌
G

𝑈,𝑈𝑖
(𝑠 − 𝑠′) = 𝑓 (𝑈𝑖) (𝑡𝑖)

= 𝑓 (𝑈𝑖) (𝜌F𝑈,𝑈𝑖
(𝑡))

= 𝜌
G

𝑈,𝑈𝑖
( 𝑓 (𝑈) (𝑡)).

Here, the last equality follows because

F(𝑈) G(𝑈)

F(𝑈𝑖) G(𝑈𝑖)

𝑓 (𝑈)

𝜌F
𝑈,𝑈𝑖

𝜌
G

𝑈,𝑈𝑖

𝑓 (𝑈𝑖)
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commutes. We have proven that

𝜌
G

𝑈,𝑈𝑖
(𝑠 − 𝑠′) = 𝜌G

𝑈,𝑈𝑖
( 𝑓 (𝑈) (𝑡))

for all 𝑖 ∈ 𝐼. Since G satisfies the locality condition (L) we conclude that 𝑠 − 𝑠′ = 𝑓 (𝑈) (𝑡). This is
the desired result. □

Proposition 4.5.7. Let 𝑋 be a topological space. Let F,G ∈ SH𝑋 and 𝑓 ∈ Mor(F,G). Assume
that 𝑓 is a monomorphism. The canonical morphism

pcok 𝑓 scok 𝑓 = Γ𝐿 (pcok 𝑓 )
𝑛=𝑛pcok 𝑓

is a monomorphism.

Proof. By Lemma 3.3.13, for every 𝑥 ∈ 𝑋 the morphism 𝑛𝑥 is an isomorphism and hence a
monomorphism. By Lemma 4.5.6, the presheaf pcok 𝑓 is a monopresheaf. Lemma 4.5.5 now
implies that 𝑛 is a monomorphism. □

Corollary 4.5.8. Let 𝑋 be a topological space. Let F,G ∈ SH𝑋 and 𝑓 ∈ Mor(F,G).

(a) If 𝑓 is a monomorphism, then 𝑓 is a kernel for the morphism 𝑝𝑠 : G → scok 𝑓 .
(b) If 𝑓 is an epimorphism, then 𝑓 is a cokernel for the morphism 𝑖 : ker 𝑓 → F.

Proof. (a) Assume that 𝑓 is a monomorphism. By Proposition 4.4.4, the composition

F G scok 𝑓𝑓 𝑝𝑠

is zero. Let H ∈ SH𝑋 and 𝑔 ∈ Mor(H,G) be such that the composition

H G scok 𝑓𝑔 𝑝𝑠

is zero. Since 𝑝𝑠 is the composition

G pcok 𝑓 scok 𝑓 = Γ𝐿 (pcok 𝑓 )𝑝 𝑛

we have 𝑛◦ 𝑝 ◦𝑔 = 0. By Proposition 4.5.7, the morphism 𝑛 is a monomorphism. Hence, 𝑝 ◦𝑔 = 0.
By Proposition 4.5.2 there exists a unique morphism 𝑡 ∈ Mor(H,F) such that

H

F G

𝑡
𝑔

𝑓

commutes. This proves that 𝑓 is a kernel for 𝑝𝑠.
(b) This follows from Proposition 4.5.4. □

Corollary 4.5.9. Let 𝑋 be a topological space. The categories PS𝑋 and SH𝑋 satisfy axiom (AB4)
of the definition of an abelian category.
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Proof. This follows from Proposition 4.5.2, Proposition 4.5.4, and Corollary 4.5.8. □

Theorem 4.5.10. Let 𝑋 be a topological space. The categories PS𝑋 and SH𝑋 are abelian.

Proof. This follows from Section 4.2, Corollary 4.3.3, Corollary 4.4.5, and Corollary 4.5.9. □

Corollary 4.5.11. Let 𝑋 be a topological space. Let F,G ∈ SH𝑋 and 𝑓 ∈ Mor(F,G). Then

(a) 𝑓 is a monomorphism if and only if ker 𝑓 (𝑈) = 0 for all open subsets𝑈 of 𝑋 .
(b) 𝑓 is an epimorphism if and only if im 𝑓 (𝑈) = G(𝑈) for all open subsets𝑈 of 𝑋 .

Proof. We have already verified that SH𝑋 satisfies (AB1) and (AB3) (see Section 4.2 and Corol-
lary 4.4.5).

(a). By Proposition 4.1.4, 𝑓 is a monomorphism if and only if ker 𝑓 = 0. The definition of ker 𝑓
implies that ker 𝑓 = 0 if and only if ker 𝑓 (𝑈) = 0 for all open subsets of𝑈.

(b). By Proposition 4.1.4, 𝑓 is an epimorphism if and only if scok 𝑓 = 0. Assume that scok 𝑓 = 0.
By Proposition 4.5.7, the morphism 𝑛 : pcok 𝑓 → scok 𝑓 is a monomorphism. Since scok 𝑓 = 0,
by Proposition 4.1.3 we have pcok 𝑓 = 0. This implies that im 𝑓 (𝑈) = G(𝑈) for all open subsets𝑈
of 𝑋 . Finally, assume that im 𝑓 (𝑈) = G(𝑈) for all open subsets 𝑈 of 𝑋 . Then pcok 𝑓 = 0.
Since scok 𝑓 = Γ𝐿 (pcok 𝑓 ), we obtain scok 𝑓 = 0. □

4.6 Exact sequences
Let 𝑋 be a topological space. Let F,G ∈ PS𝑋 , and let 𝑓 ∈ Mor(F,G). Since PS𝑋 is an abelian
category, the morphism 𝑓 admits an image, which will denote by pim 𝑓 and refer to as the presheaf
image of 𝑓 . Thus,

pim 𝑓 = ker
(
G pcok 𝑓𝑝

)
. (4.18)

Assume further thatF andG are sheaves, i.e.,F,G ∈ SH𝑋 . Since the category SH𝑋 is also abelian,
the morphism 𝑓 admits an image, which will denote by sim 𝑓 and refer to as the sheaf image of 𝑓 .
We have

sim 𝑓 = ker
(
G scok 𝑓𝑝𝑠

)
. (4.19)
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